OMPL: The Open Motion Planning Library

Mark Moll and Lydia E. Kavraki
Department of Computer Science
Rice University
Houston, TX
USA
Motion planning problems are hard

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>COMPLEXITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric Constraints:</td>
<td></td>
</tr>
<tr>
<td>Sofa Mover (3DOF)</td>
<td>(O(n^{2+\epsilon})) - not implemented [HS96]</td>
</tr>
<tr>
<td>Piano Mover (6DOF)</td>
<td>Polynomial – no practical algorithm [SS83]</td>
</tr>
<tr>
<td>(n) Disks in the Plane</td>
<td>NP-Hard [SS83]</td>
</tr>
<tr>
<td>(n) Link Chain in 3D</td>
<td>PSPACE-Complete [HSS87]</td>
</tr>
<tr>
<td>Generalized Mover</td>
<td>PSPACE-Complete [Canny88]</td>
</tr>
<tr>
<td>Dynamics Constraints:</td>
<td></td>
</tr>
<tr>
<td>Point with Newtonian Dynamics</td>
<td>NP-Hard [DXCR93]</td>
</tr>
<tr>
<td>Polygon Dubin’s Car (Linear)</td>
<td>Decidable [CPK08]</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>Unknown, probably undecidable</td>
</tr>
<tr>
<td>Discrete Transitions and Dynamics Constraints:</td>
<td></td>
</tr>
<tr>
<td>Hybrid Systems</td>
<td>Undecidable [Alur et. al 95]</td>
</tr>
</tbody>
</table>
Exact, approximate, and probabilistically complete algorithms

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact</td>
<td>theoretically insightful</td>
<td>impractical</td>
</tr>
<tr>
<td>cell decomposition</td>
<td>easy</td>
<td>does not scale easily</td>
</tr>
<tr>
<td>control-based</td>
<td>online, very robust</td>
<td>requires good trajectory</td>
</tr>
<tr>
<td>potential fields</td>
<td>online, easy</td>
<td>slow or fail</td>
</tr>
<tr>
<td>sampling-based</td>
<td>fast and effective</td>
<td>cannot recognize impossible query</td>
</tr>
</tbody>
</table>
Sampling-based planning algorithms

Roadmaps:
PRM [Kavraki, Svestka, Latombe, Overmars '96]
Obstacle based PRM [Amato, Bayazit, Dale '98]
Medial Axis PRM [Wilmarth, Amato, Stiller '98]
Gaussian PRM [Boor, Overmars, van der Stappen '01]
Bridge Building Planner [Hsu, Jiang, Reif, Sun '03]
Hierarchical PRM [Collins, Agarwal, Harer '03]
Improving PRM Roadmaps [Morales, Rodriguez, Amato '03]
Entropy guided Path-planning [Burns, Brendan, Brock '04]
RESAMPL [Rodriguez, Thomas, Pearce, Amato '06]
Probab. foundations of PRM [Hsu, Latombe, Kurniawati '06]
Adaptive PRM [Kurniawati et al. '08]
Multi-model planning [Hauser et al. '10]
Small-tree PRM [Lanteigne et al. '11]
Rapidly-exploring Random Roadmap [Alterovitz et al. '11]
and many others

Trees:
EST [Hsu et al. '97, '00]
RRT [Kuffner, LaValle '98]
RRT-Connect [Kuffner, LaValle '00]
SBL [Sanchez, Latombe '01]
RRF [Li, Shie '02]
Guided EST [Phillips et al. '03]
PDRRT [Ranganathan, Koenig '04]
SRT [Plaku et al. '05]
DDRRT [Yershova et al. '05]
ADDRRT [Jaillet et al. '05]
RRT-Blossom [Kalisiak, van Panne '06]
PDST [Ladd, Kavraki '06]

Trees (continued):
Utility RRT [Burns, Brock '07]
GRIP [Bekris, Kavraki '07]
Multiparticle RRT [Zucker et al. '07]
TC-RRT [Stillman et al. '07]
RRT-JT [Vande Wege et al. '07]
DSLX [Plaku, Kavraki, Vardi '08]
KPIECE [Şucan, Kavraki '08]
RPDST [Tsianos, Kavraki '08]
BiSpace [Diankov et al. '08]
GRRT [Chakravorty, Kumar '09]
IKBiRRT [Berenson et al. '09]
CBiRRT [Berenson et al. '09]
J+RRT [Vahrenkamp '09]
RG-RRT [Shkolnik et al. '09]
PCA-RRT [Li, Bekris '10]
T-RRT [Jaillet et al. '10]
SyCLoP [Plaku et al. '10]
RRT* [Karaman et al, '10]
RRG [Karaman et al, '10]
PRM* [Karaman et al, '10]
Bi-RRT* [Akgun et al. '11]
SR-RRT [Lee et al. '12]
RRT# [Arslan et al. '13]
STRIDE [Gipson et al. '13]
SPARS [Bekris et al. '13]
and many others

bold = included with OMPL
Point robot in 2-D

a robot state
Operation of PRM

○: nodes, random states
Operation of PRM

:edges, paths computed by local planner
Answering queries

plan a path: 1. connect start & goal to roadmap 2. perform graph search
Operation of PRM

feasible path computed by local planner
- Repeat until goal is connected to tree.
- Bi-directional trees are possible when considering only geometric constraints.
Main features of OMPL
OMPL in a nutshell

• Common core for sampling-based motion planners

• Includes commonly-used heuristics

• Takes care of many low-level details often skipped in corresponding papers

• Intended for use in:
 • Education
 • Research
 • Industry
Abstract interface to core sampling-based motion planning concepts

- state space / control space
- state validator (e.g., collision checker)
- sampler
- goal (problem definition)
- planner
- ...

except robot & workspace...
States & state spaces

- **abstract state space**
 - API requirements:
 - StateType
 - alloc/free state
 - distance
 - interpolation
 - state equality
 - rotation (2D,3D)
 - translation (\mathbb{R}^n)
- **compound**
 - used for:
 - rigid body motions
 - manipulators
 - ...
Control spaces & controls

• Needed only for control-based planning

• Analogous to state spaces and states:

\[\mathbb{R}^n \]

abstract control space

API requirements:
- ControlType
- alloc/free control
- equality

compound
State validators

• Problem-specific; **must** be defined by user or defined by layer on top of OMPL core → **MoveIt!**

• Checks whether state is collision-free, joint angles and velocities are within bounds, etc.

• **Optionally**, specific state validator implementations can return

 • distance to nearest invalid state (i.e., nearest obstacle)

 • gradient of distance

 Can be exploited by planners / samplers!
Samplers

- For every **state space** there needs to be a **state sampler**
- State samplers need to support the following:
 - sample uniform
 - sample uniform near given state
 - sample from Gaussian centered at given state
Many ways to get sampling wrong

Example: uniformly sampling 3D orientations

 naïve & wrong:
correct:

Images from Kuffner, ICRA ’04
Similar issues occur for nearest neighbors

- *k* nearest neighbors can be computed efficiently with *kd*-trees in **low-dimensional, Euclidean** spaces.

- In high-dimensional spaces **approximate** nearest neighbors much better.

- In **non-Euclidean** spaces (e.g., any space that includes *rotations*), other data structures are necessary.
Valid state samplers

- *Valid state samplers* combine low-level *state samplers* with the *validity checker*

- Simplest form: sample at most n times to get valid state or else return failure

- Other sampling strategies:
 - Try to find samples with a large clearance
 - Try to find samples near obstacles (more dense sampling in/near narrow passages)
Goals

- **Goal**
 - **GoalRegion**
 - **GoalSampleableRegion**
 - **GoalState** (single goal state)
 - **GoalStates** (multiple goal states)
 - **GoalLazySamples** (multiple goal states, computed in separate thread)

- can only tell whether state satisfies Goal condition
- provides distance to goal region
- can sample from goal region
- multiple goal states
OMPL planning algorithms

• Take as input a **problem definition**: object with one or more **start states** and a **goal object**

• Planners need to implement two methods:

 • **solve:**
 – takes **PlannerTerminationCondition** object as argument
 – termination can be based on timer, external events, ...

 • **clear:**
 clear internal data structures, free memory, ready to run solve again
Many planners available in OMPL

Planner

- **geometric planning**
 - KPIECE, BKPIECE, LBKPIECE
 - PRM, LazyPRM
 - RRT, RRTConnect, LazyRRT
 - EST, SBL
 - PDST
 - STRIDE

- **planning with controls**
 - KPIECE
 - RRT
 - EST
 - Syclop
 - PDST

Optimizing planners:
- PRM*
- RRT*, BallTreeRRT*
- T-RRT
- SPARS, SPARS-2

= available soon!
Minimal code example

```python
1 space = SE3StateSpace()
2 # set the bounds (code omitted)
3
4 ss = SimpleSetup(space)
5 # "isStateValid" is a user-supplied function
6 ss.setStateValidityChecker(isStateValid)
7
8 start = State(space)
9 goal = State(space)
10 # set the start & goal states to some values
11 # (code omitted)
12
13 ss.setStartAndGoalStates(start, goal)
14 solved = ss.solve(1.0)
15 if solved:
16     print setup.getSolutionPath()
```
Benchmarking
OMPL.app
Sample OMPL.app problems
Resources to get started with OMPL
The Open Motion Planning Library

OMPL, the Open Motion Planning Library, consists of many state-of-the-art sampling-based motion planning algorithms. OMPL itself does not contain any code related to, e.g., collision checking or visualization. This is a deliberate design choice, so that OMPL is not tied to a particular collision checker or visualization front end.

OMPLapp, the front-end for OMPL, contains a lightweight wrapper for the FCL and POI collision checkers and a simple GUI based on PyQt / PySide. The graphical front-end can be used for planning motions for rigid bodies and a few vehicle types (first-order and second-order cars, a blimp, and a quadrotor). It relies on the Assimp library to import a large variety of mesh formats that can be used to represent the robot and its environment.

Current version: 0.12.2
Released: Jan 22, 2013
Click for citation, if you use OMPL in your work

Contents of This Library
- OMPL contains implementations of many sampling-based algorithms such as PRM, RRT, EST, SBL, KPIECE, SyCLOP, and several variants of these planners. See available planners for a complete list.
- All these planners operate on very abstractly defined state spaces. Many commonly used state spaces are already implemented (e.g., SE2, SE3, Rn, etc.).
- For any state space, different state samplers can be used (e.g., uniform, Gaussian, obstacle based, etc.).
- API overview
- Documentation for just the OMPL core library (i.e., without the "app" layer).

OMPL News & Events
- OMPL has been accepted as a mentoring organization for the 2013 Google Summer of Code!
- OMPL has won the 2012 Open Source Software World Grand Challenge!
- An article about OMPL has been accepted for publication in IEEE's Robotics & Automation Magazine.
- At ROSCON, Sachin Chitta and Ioan Sucan gave a talk about MoveIt!, the new motion planning (including OMPL). It will eventually replace the arm navigation stack.
- IROS 2011 Tutorial on Motion Planning for Real Robots. This hands-on tutorial demonstrates motion planning.

Online at: http://ompl.kavrakilab.org
Contact us at: ompl-devel@lists.sourceforge.net, ompl-users@lists.sourceforge.net
Public repositories at: https://bitbucket.org/ompl

OMPL Overview Documentation Code Issues Community About Blog
OMPL for education

- Programming assignments centered around OMPL, available upon request.
- Ongoing educational assessment.
- Already in use in several robotics / motion planning classes.

Happy OMPL users: students in the Algorithmic Robotics class at Rice, Fall 2010
Discussion

• OMPL actively developed, but ready for general use

• Can easily implement new algorithms from many reusable components

• Simple high-level interface:

 • Can treat motion planner almost as a black box

 • Easy enough that non-experts can use it

• Interface generic enough to be extensible in many ways

We want your contributions!
Acknowledgements

Rice University:
Lydia Kavraki
Ryan Luna
Matt Maly
Bryant Gipson
Devin Grady
Amit Bhatia

Willow Garage:
Ioan Şucan
Sachin Chitta

Funding from:
NSF CCLI grant #0920721
NSF IIS grant #0713623
Willow Garage