Roadmap Spanners

Kostas Bekris
Joint work with Andrew Dobson and James Marble
Department of Computer Science
Rutgers University
May 10th, 2013
Why Roadmaps and Roadmap Spanners?

Produce sparse graphical representations that:
– reflect the connectivity of the configuration space
– and can be used to efficiently answer online queries with good quality paths

• Posed as an important challenge for motion planning [Agarwal, ‘11]

• Good for resource constrained robots, potentially interfacing with a computing cloud

• Useful in higher-dimensional challenges such as mobile manipulation:
 – Roadmaps can store experience! They are path libraries!

From the work on “Dynamic Roadmaps” by Kallmann, Mataric
NEAR-

OPTIMAL

MOTION
Roadmaps and Path Quality

- A fully connected graph gives asymptotically optimal solutions
 - Resembles exhaustive search, results quickly in a huge data structure
- Connecting to k closest neighbors is efficient [PRM, Kavraki et al. ’96]
 - Doesn’t result in an asymptotically optimal solution for constant k

From percolation theory
It is sufficient if we attempt to connect any new sample with approximately $k = \log n$ neighbors, where n is the number of nodes in the roadmap.

[kPRM* - Karaman, Frazzoli ‘11]

- Efficiency challenge
 - Asymptotically optimal roadmaps are large and dense
Asymptotic Near-Optimality & Graph Spanners

- A t-spanner is a sparse subgraph
- For every shortest path in the original graph
 - There is a path in the spanner that is no longer than t times the original length

\begin{itemize}
 \item Compute k-PRM*
 \item Return its spanner
\end{itemize}

\[\text{Potential new edge length} = 1.0\]
\[\text{Existing shortest path length} = 1.5\]

- Giving rise to a sequential approach:
 - Compute k-PRM*
 - Return its spanner

\[\text{Marble, Bekris IROS '11}\]
\[\text{Based on the graph spanner approach by Baswana, Sen '07}\]
Incremental Roadmap Spanner

- Start with the asymptotically optimal k-PRM*
- Interleave an incremental spanner algorithm
- Result: An asymptotically near-optimal planner
 - Smaller average increase in path length than the stretch factor
 - Sparse roadmap with smaller memory footprint
 - Faster construction and online query resolution

[Marble, Bekris ISRR ’11, IEEE Transactions on Robotics ’13]
Sparse Roadmap Spanner (SPARS)

• Up to this point: Solutions add all samples in the roadmap
• Idea: Asymptotic Near-Optimality with Additive Cost
 [Dobson, Krontiris, Bekris WAFR ’12, IJRR ’13 (accepted)]
• Consider two graphs in parallel:
 - Dense Graph: Asymptotically Optimal (δ-PRM*)
 - Roadmap Spanner: Asympt. Near-Optimal, Not all nodes added (!)

• When should samples be added to S?
 - If necessary for coverage, connectivity, optimality
• When should the sampling stop?
 - Criterion: After M consecutive failures to add a node

Similar objectives in recent work by Salzman, Agarwal, Halperin, Shaharabani ICRA ‘13
SPARS: Node Selection

Coverage

Connectivity

Homotopic Classes

Path Quality

Can be achieved even without storing the dense graph
[Dobson, Bekris ICRA’13]
Properties of SPARS methods

• Achieves **probabilistic completeness** through coverage and connectivity criteria, as visibility-based PRM.

• With probability approaching 1 as consecutive failures, M, goes to infinity, SPARS2 will **cover all arbitrary optimal paths**.

• Paths in the Roadmap Spanner have **length bounded** by an input stretch factor, t, with probability approaching 1.

• SPARS2 grows the roadmap **with probability zero** as iterations increase to infinity.
Evaluation

Abstract environment in the Open Motion Planning Library:

Path Length vs PRM* (Abstract)

Answered Queries out of 1000 (Maze t=2)

Average Valence (Abstract T=2)

Offline Memory

ge (Abstract t=2)

Memory Usage (Bytes)
Conclusion/Future Work

Roadmap spanners are practical solutions with desirable properties for high-dim motion planning

- Available in the next release of OMPL
- Work in progress:
 - Show manipulation solutions using MoveIt
 - Study roadmaps with directed edges
 - Finite time properties of sampling-based planners

We would like to thank the CPS program of the National Science Foundation for its support
- NSF CNS 0932423

Thank you!