Movelt Overview

Mark Moll, PhD

Director of Research PickNik Robotics O mamoll

Outline

- Movelt Background
- Movelt Applications: Land, Sea, Space
- Typical Usage Patterns
- Components
- More Resources

The Dream: A Multi Purpose Robot

Powered by Movelt and ROS

Movelt: A Hardened Motion Planning Platform

A Feature-Rich Ecosystem

 Global Planners OMPL SBPL TrajOpt STOMP CHOMP 	 Cartesian Planners RobotState Descartes JogArm PilzMotion 	Inverse Kinematics KDL IKFast TracIK LMA BioIK
 Grasping Libraries Movelt Grasps Grasp Pose Detection (GPD) Intel OpenVino GPD 	 Collision Checking Fast Collision Library (FCL) Bullet 	 Perception / Octomap Depth Images Point Clouds

Flexibility (but also complexity)

- Can handle:
 - Groups of joints
 - Multivariable joints
 - Mimic joints

- Notions of:
 - Cartesian-Space Planning
 - Joint-Space Planning
 - Orientation Constraints
 - Visibility Constraints

Flexibility (but also complexity)

Differential drive treated as a special joint:

- 3 DOFs: position + orientation
- joint distance/interpolation overridden to correspond to optimal diff-drive paths
- rest of Movelt "just works"

29,843 Downloads per month of moveit_core

- **733** Academic citations of Movelt
- 162,630 Unique users to moveit.ros.org in 2021
 - **5.600** Members of Discourse, Movelt's Discussion Forum
 - **1,136** Github users have starred the Movelt project
 - 262 Github code contributors to Movelt
 - **167** International attendees of 2020 MoveltWorld online event

> Movelt

An Active Community

- World Movelt Day (annually)
- Monthly Movelt Manipulation Working Group meetings
- ROSCON / ROS World workshops & tutorials

Land, Sea, Space

Land

Agriculture Plant Harvesting

Kitchen Assistant

Bin Picking

Sea

Remotely Operated Underwater Vehicles

Inter Vehicle Robotics

On-orbit Servicing, Assembly, and Manufacturing Planetary Activities Lunar Base Construction

Typical Usage Patterns

Setup Assistant (work in progress for Movelt 2)

									Mo	/elt!	Set	up /	Assistant	>
Start	Optimize	Se	lf	·C	oll	isi	ioi	n (Ch	ec	ki	n	g and a second	
Self-Collisions	This searches for pa motion planning tim collision in the robo	airs o ne. Th	f rol tese	bot l pair	inks s are	that dis	t can able	d wi	ely t hen	oe di they	sabl are	ed alv	from collision checking, decreasing ways in collision, never in collision, in acent to each other on the kinematic	~
Virtual Joints	chain. Sampling der	nsity	spec	ifies	hov	v ma	any r	and	om r	obo	t pos	sitio	ons to check for self collision.	ļ
Planning Groups	Sampling Density	: Lov	N -		6			7	- 24		0	7		
Robot Poses		Mir	n. co	llisio	ons f	or "	alwa	ys"-	colli	ding	pair	rs:	95% 🗘 Generate Collision Matrix	
End Effectors		ô	4	62	3	ć4	5	66	1	p	nger	inger		
Passive Joints		Inda_lin	Inda_lin	Inda_lin	Inda_lin	Inda_lin	Inda_lin	Inda_lin	Inda_lin	nda_har	a_leftfi	a_rightf		
3D Perception		par	par	par	par	par	par	par	par	par	pand	panda		19
Simulation	panda_link0			V	•	•								
	panda_link1			3	2	V								
ROS Control	panda_link2	1	•		•	1								
	panda_link3	2	1	2		3	•	2	2		2	2		
Author Information	panda_link4	•	~	1	~		•	~	~	~	~	•	· ·	
Configuration Files	panda_link5				2	V		V	1	2				
	panda_link6				~	~	~		•	1	~	~		
	panda_link7				Z	J	1	2		2	V	-		
	panda_hand				~	1	1	1	1		1	-	e	
	link name filter										G) li	near view 💿 matrix view <u>R</u> evert	

CKNIK

Rviz Motion Planning Plugin

ROS Services & Actions

Pro-Tip: Use C++ classes individually

robot_model_loader_.reset(new robot_model_loader::RobotModelLoader("robot_description"));

robot_model_ = robot_model_loader_->getModel();

planning_scene_.reset(new planning_scene::PlanningScene(robot_model_));

tf_.reset(new tf::TransformListener(nh_));

psm_->startStateMonitor("/joint_states", "");

psm_->startPublishingPlanningScene(planning_scene_monitor::PlanningSceneMonitor:: UPDATE_SCENE, "my_planning_scene");

visuals_tools_reset(new MoveItVisualTools(robot_model_, planning_scene_monitor_));

trajectory_execution_manager_.reset(new trajectory_execution_manager:: TrajectoryExecutionManager(robot_model_));

Best for researchers who want to modify code

KNIK

Pro-Tip: Use MoveltCpp

- static const std::string PLANNING_GROUP = "stretch_arm";
- 2 auto moveit_cpp_ptr = std::make_shared<moveit_cpp::MoveItCpp>(node);
- 3 moveit_cpp_ptr->getPlanningSceneMonitor()->providePlanningSceneService();
- 4 auto planning_components = std::make_shared<moveit_cpp::PlanningComponent>
 (PLANNING_GROUP, moveit_cpp_ptr);
- 5 planning_components->setStartStateToCurrentState();
- 6 planning_components->setGoal("extended");
- 7 auto plan_solution = planning_components->plan();

```
9 if (plan_solution)
```

```
10
```

12

8

```
11 .....
```


Movelt Task Constructor

	/root/ws_stretch/inst	all/pick_place_task/share/pick_place_task/rviz/mtc.rviz* - RViz — 🛛 😵
File Panels Help		
Motion Planning Tasks		
2 0	Exec /3	
Task Tree		
name 🖌 🖌 time	# + cost comment	
Motion Planning Tasks	5 39,4736	
 task pipeline 5 0 5.1236 	4 45.8399	
t current state 1 00.7172	3 35.6373	
↓ open hand 1 00.0261	2 36.4049	
f move to object pose 23 0 0.7809	1 36.1323	
* I pick object 24 0 3.0374		
*t grasp page IK 61 15 2 6196		
t generate grasp pose 25 0.0.002		
4 allow collision (hand object) 25 0 0.0029		
1 close hand 25 0 0.3109		
1 attach object 25 0 0.0022		
4 allow collision (object, sup 25 0 0.0019		
4 lift object 25 0 0.0424		
A move to place		
* t place object 5 00.2235		
t lower object 5 0 0.0089		
t generate place pose 500 0 0.0077		
1 open hand 5 0 0.0496		
I forbid collision (hand,object) 5 0 0.0003		
4 detach object 5 0 0.0002		
Properties		
eef gripper		
forwarded_properties undefined		
band gripper	arm	
ik frame link grasp ce	enter	
marker ns task		
timeout undefined		
Reset Left-Click: Rotate, Middle-Click: Move X/Y	Right-Click/Mouse Whe	el: Zoom, Shift: More options. 31 fps

PICKNIK

Components

High Level Components

Plugin Framework

Full details here

PICKNIK

Planning Scene Monitor

7 PICKNIK

Motion Planner Plugins

OMPL	STOMP / CHOMP	TrajOpt	SBPL
Kavraki Lab at Rice	Kalakrishnan et al	John Schulman Pieter Abbeel	Maxim Likhachev's Lab at CMU
Probabilistic, Sampling-Based	Optimization-Based	Sequential Convex Optimization	Graph-Based
Probabilistically Complete	Locally Optimal	Locally Optimal	Resolution Complete
Stochastic	Deterministic	Deterministic	Deterministic
Is a library of many planners Computationally fast More reliable runtime for real-world applications Many variants of algorithms available	Generates smooth well behaved collision free motion paths in reasonable time Can incorporate additional objective functions - collision avoidance and smoothness	Currently in final development	Requires pre-processing phase Requires custom heuristics for different configuration spaces More reliable solutions for real-world applications

Planner Request Adapters

- Plugins for pre-/post-processing planner request
- Two types of plugins:
 - **Trajectory generation:** (re)parametrize trajectory to respect velocity, acceleration, jerk limits.
 - Heuristic fixes for common problems:
 - set workspace bounds if none defined
 - tweak joints in start state to be within joint limits
 - tweak start state to be collision free

Adapts research theory to real world hardware

Inverse Kinematics

- <u>KDL</u> x dof
 - Kinematics Dynamics Library
 - OROCOS
- IKFast 6 or 7 dof
 - OpenRave Analytical
- <u>Trac-IK</u>
 - Combines KDL with Sequential Quadratic Programming approach
- OPW Kinematics 6 dof
 - Closed form IK for parallel base, spherical wrist industrial manipulators

NIK

Time Parameterization

- TOTG: Time Optimal Trajectory Generation (recommended)
- Ruckig: Only method that supports jerk limits (new!)
- ITPP: Iterative Time Path Parameterization
- TOPP: Time Optimal Path Parameterization

More info here

Comparison of Movelt 1 and Movelt 2

	Movelt 1	Movelt 2
ROS 1 Support	~	via ros1_bridge
ROS 2 Support	×	~
Motion Planning	J	√
Inverse Kinematics	1	\checkmark
Perception	√	\checkmark
Grasping	\checkmark	\checkmark
Setup Assistant	~	in development
Movelt Task Constructor	1	pending
Game Controller Integration for Servo	√	1

	Movelt 1	Movelt 2
Industrial Trajectory Generator	~	planned
Probabilistically complete Cartesian Planning	Stale Patch	\checkmark
Composable Nodes	nodelet subsystem	~
Planning for Differential Drive Bases	×	~
Hybrid Planning (global + local planners)	×	pending
Based on Realtime Capable DDS Messaging	×	\checkmark
Native Windows Build	via RoboStack	\checkmark
New Feature Development by PickNik	×	~
Development Coordinated with ROS 2 Technical Steering Committee	×	~
Built for Industrial Security	×	~

More Resources

Online Tutorials (http://moveit2_tutorials.picknik.ai)

Movelt » Tutorials » Movelt 2 Tutorials

C Edit on GitHub

MoveIt 2 Tutorials

These tutorials will quickly get you, and your robot, using the Movelt 2 Motion Planning Framework.

In these tutorials, the Franka Emika Panda robot is used as a quick-start demo. Alternatively, you can easily use any robot that has already been configured to work with Movelt - check the list of robots running Movelt to see whether Movelt is already available for your robot. Otherwise, you can setup Movelt to work with your custom robot in the tutorial section "Integration with a New Robot", below.

Main website (http://moveit.ros.org)

Thanks!

PickNik Robotics picknik.ai Colorado, USA

Mark Moll mark@picknik.ai