
MoveIt Task Constructor
High-Level Task and Motion Planning using MTC

ROSWorld October 2021 - Mobile Manipulation Workshop

Henning Kayser
 henningkayser

Outline

1. Motivation
2. MTC Core Concepts
3. Example Task
4. Default Stages
5. Key Properties
6. Hands-on MTC Demo

Motivation

Goal

● Provide a generic method to solve
complex multi-step tasks

● Make code more reusable,
maintainable, portable,
configurable and robust

● Separate high-level behavior from
low-level implementation

● Improve debugging and result
introspection

Method

● Encapsulate task steps in
composable subproblems

● Generic solvers and interfaces
for certain problem types

● Structure for arranging solvers in
sequence and hierarchies

● Forwarding of parameters and
results between stages

● Inheritance of solver classes

Task

● Specifies a complex planning problem
● Consists of stages that form a sequence of high-level

steps

Stage

● Low-level implementation of high-level planning steps
● Computes SubSolutions that connect, propagate or

generate InterfaceStates

InterfaceState

● Snapshot of planning scene, robot state and properties
● Connection between compatible SubSolutions

MTC Core Concepts

Generator Stage (↕)

● Produces and propagates
InterfaceStates to adjacent
Stages

Examples:
● Pose sampler (+ IK solver)
● Fixed waypoint state
● Output/Filter of current state

Propagator Stage (⇅ / ↑ / ↓)

● Receives an input InterfaceState,
solves a problem and propagates
the solution state

● Forward, backward or both

Examples:
● (Relative) cartesian motions

(approach/lift when grasping)
● Scene manipulations

(attach/detach objects, ACM)
● Filter/Validator of input states

Connector Stage (ǁ)

● Connects InterfaceStates of
both adjacent stages

Example:
● Free-motion plan between

start and goal states

Stage Types

Parallel Container

Alternative Stages
● Optional solutions, only one needed
● i.e. pick with left or right hand

Fallback Stages
● Solve stages in order if higher stages fail
● i.e. default planner and fallback options

Merger Stages
● Combine multiple distinct problems
● i.e. open gripper while arm moves

Serial Container

● Combines multiple sequential stages
● i.e. approach, grasp, lift retreat

Wrapper Container

● Filter or modify solutions of a subordinate stage
● I.e. wrap a pose generator with an IK solver

Stage Containers and Hierarchies

 Task Stages
 ↕ current state
 ǁ move to pick
 ↕pick object
 ǁ move to place
 ↕place object
 ↓move to home

Is object available? Need to open gripper?

How to move from current state to pick?

How to bring object to place pose? Are there
constraints like keeping a glass upright?

How to grasp? Close gripper? Handle collisions?

Where and how to place object? Handle collisions?

How to get back after placing?

Example: Stage Sequence Flow

 (unwrapped Serial Container)
 ↕ current state
 ǁ move to pick
 ↕pick object
 ↑ approach
 ↕ grasp pose IK
 ↓ allow contact
 ↓ close gripper
 ↓ attach object
 ↓ lift object
 ǁ move to place
 ↕place object
 ↓move to home

Cartesian motion directed from grasp pose

Sample grasp pose (orientation) and run IK

Add gripper motion, i.e. linear interpolation

Allow collision between gripper and object

Attach object to gripper in planning scene

Cartesian motion directed from grasp pose

Example: Stage Sequence Flow

 Task Stages
↕ current state
 ǁ move to approach
↕pick object
 ↑ approach
 ↕ grasp pose IK
 ↓ allow contact
 ↓ close gripper
 ↓ attach object
 ↓ lift object
 ǁ move to place
↕place object
 ↓lower object
 ↕place pose IK
 ↓open gripper
 ↓detach object
 ↓forbid contact
 ↓retreat
↓move to home

Cartesian motion relative to place pose

Sample place pose and run IK

Detach object from tool link in planning scene

Linear interpolation to open gripper

Remove object/gripper from ACM

Cartesian motion away from object

Example: Stage Sequence Flow

 ...are stages that hook into remote stages for accessing solutions.

↕ current state
 ǁ move to approach
↕pick object Forward object pose and shape to grasp pose IK Solver
 ↑ approach
 ↕ grasp pose IK
 ↓ allow contact
 ↓ close gripper
 ↓ attach object
 ↓ lift object
 ǁ move to place
↕place object Forward pose of attached object to determine place pose IK
 ↓lower object
 ↕place pose IK
 ↓open gripper
 ↓detach object
 ↓forbid contact
 ↓retreat
 ↓ move to home

Monitoring Generator

18 Steps

↕ current state
 ǁ move to approach
↕pick object
 ↑ approach
 ↕ grasp pose IK
 ↓ allow contact
 ↓ close gripper
 ↓ attach object
 ↓ lift object
 ǁ move to place
↕place object
 ↓lower object
 ↕place pose IK
 ↓open gripper
 ↓detach object
 ↓forbid contact
 ↓retreat
 ↓ move to home

9 Stage Classes

CurrentState
Connect
SerialContainer
 MoveRelative
 ComputeIK { GenerateGraspPose }
 ModifyPlanningScene
 MoveTo
 ModifyPlanningScene
 MoveRleative
Connect
SerialContainer
 MoveRelative
 ComputeIK { GeneratePlacePose }
 MoveTo
 ModifyPlanningScene
 ModifyPlanningScene
 MoveRelative
MoveTo

7 Primitive Stage Classes
… provided with the MTC library!

CurrentState (Generator)
Connect (Connector)
MoveRelative (Propagator)
ComputeIK (Generator)
ModifyPlanningScene (Propagator)
MoveTo (Propagator)
GeneratePose (Generator)

Default Stage Classes

Advantages

+ Abstraction from setup/robot
+ Code reusability
+ End-to-end manipulation planning
+ Alternative/optional solution paths
+ Visual debugging (limited)
+ Integration with higher level control

architectures
+ Solution robustness
+ Testability and maintainability

Drawbacks

- New methodology
 -> steep learning curve

- Unintuitive backward+forward
directions

- Not possible to adapt running
tasks to environment

- Graph complexity can increase
planning times exponentially

Key Properties

Hands-on MTC Demo

Runtime Demo

Runtime Demo: MTC Panel

Runtime Demo: Pipeline Initialization
using namespace moveit::task_constructor;

RCLCPP_INFO(LOGGER, "Initializing task pipeline");

task_ = std::make_unique<Task>(); // pick_place_task

task_->loadRobotModel(node);

task_->setProperty("group", parameters.mobile_base_arm_group_name);

task_->setProperty("eef", parameters.end_effector_name);

task_->setProperty("hand", parameters.hand_group_name);

task_->setProperty("ik_frame", parameters.hand_frame);

auto sampling_planner = std::make_shared<solvers::PipelinePlanner>(node);

auto cartesian_planner = std::make_shared<solvers::CartesianPath>();

… /** Populate Task Stages **/

task_->enableIntrospection(); // Enable RViz panel

task_->plan(5 /* max_solutions */);

if (task_->numSolutions() > 0)

 task_->execute(*task_->solutions().front());

/** Open Hand **/

 {

 auto stage =

 std::make_unique<stages::MoveTo>("open hand", sampling_planner);

 stage->setGroup(parameters.hand_group_name);

 stage->setGoal(parameters.hand_open_pose);

 task_->add(std::move(stage)); // Populate Task

 }

Runtime Demo: Stage Implementation

 // Forward current_state on to grasp pose generator

Stage *current_state_ptr = nullptr;

/** Current State **/

{

 auto current_state =

 std::make_unique<stages::CurrentState>("current state");

 current_state_ptr = current_state.get();

 task_->add(std::move(current_state));

}

…

/** Generate Grasp Pose **/

{

 // Sample grasp pose

 auto stage = std::make_unique<stages::GenerateGraspPose>("generate grasp pose");

 stage->properties().configureInitFrom(Stage::PARENT);

 stage->properties().set("marker_ns", "grasp_pose");

 stage->setPreGraspPose(parameters.hand_open_pose);

 stage->setObject(parameters.object_name);

 stage->setAngleDelta(M_PI / 12);

 stage->setMonitoredStage(current_state_ptr); // Hook into current state

 // Compute IK

 auto wrapper = std::make_unique<stages::ComputeIK>("grasp pose IK", std::move(stage));

 wrapper->setMaxIKSolutions(8);

 wrapper->setMinSolutionDistance(1.0);

 wrapper->setIKFrame(parameters.hand_frame);

 wrapper->properties().configureInitFrom(Stage::PARENT, {"eef", "group"});

 wrapper->properties().configureInitFrom(Stage::INTERFACE, {"target_pose"});

 grasp->insert(std::move(wrapper));

}

Runtime Demo: Monitoring Stage

Have fun!

