

Sachin Chitta, Ioan Sucan, Acorn Pooley

with contributions from: Dave Coleman, Suat Gedikli, Mario Prats,
Matei Ciocarlie, Kaijen Hsiao, Jon Binney, Adam Leeper, Julius
Kammerl, David Gossow, Vincent Rabaud, Dave Hershberger and the
ROS and PR2 communities

What is MoveIt!

- MoveIt!- Software for building mobile manipulation applications
 - * Motion Planning, Kinematics, Collision Checking integrated with Perception, Grasping, Control and Navigation for Mobile Manipulation

Motivation

- Build state of the art software platform for robotics applications and research
- "Simple things should be easy"
 - Provide out-of-the-box experience
 - easy to setup with new robots Setup Assistant
 - Easy to use APIs C++ and Python
- "Allow users to dive deeper to address harder problems"
 - Flexible platform easy to add new components
- Performance
 - design for high performance

Motivation

- Developing new higher-level capabilities is time-consuming
 - building every capability from scratch is a waste of effort
- Environment awareness critical for new applications
 - Integrated 3D perception can provide situational awareness, improving safety, especially in human-robot collaborative tasks
- Motion Planning important for dynamic changing environments
 - essential for maintaining safety and performance in human-robot collaborative tasks
- Constrained manipulation tasks are hard to solve
 - increasingly complex types of constraints need to be handled

MoveIt!: Evolution

- MoveIt! has evolved from the arm_navigation and grasping pipeline set of stacks
 - essentially a rewrite from scratch
 - * ROS API almost the same
 - incorporates lessons learnt

Mobile Manipulation: State of the art

Chitta, Jones, Ciocarlie, Hsiao, Sucan, 2011

Robots Using Our Software

Application - ROS-Industrial

MoveIt!

Application - ROS-Industrial

MoveIt!

Technical Capabilities

- Collision Checking: fast and flexible
- Integrated Kinematics
- Motion Planning
 - fast, good quality paths
 - kinematic constraints
- Integrated Perception for Environment Representation
- Standardized Interfaces to Controllers
- Execution and Monitoring
- Kinematic Analysis

MoveIt!

Collision Checking

- FCL Flexible Collision Library*
 - parallelizable collision checking
 - * Maximum about 2-3,000 full body collision checks for the PR2 per second
 - ✓ with realtime sensor data
 - + high fidelity mesh model
- Proximity Collision Detection
- Uses 3D distance transform to determine distance to nearest obstacle and gradient
- + very fast 40 to 80,000 collision checks per second for the full body of the PR2
- - not as accurate

Motion Planning

- Plugin interface for planners
- Integration with robots through MoveIt!
- Automatically configured using the MoveIt! Setup Assistant
 - Sampling based planners (OMPL) *http://ompl.kavrakilab.org
 - Search Based Planning Library (SBPL) *http://www.ros.org/wiki/sbpl

Integrating Perception

Octomap: octomap.sf.net

Point Cloud Library: pointclouds.org

Reactive Motion

Constraint Representation

- Joint Constraints
- Position Constraints
- Orientation Constraints
- Visibility Constraints

Orientation Constraints

Applications: Benchmarking

Industrial Environment

Narrow Passage Environment

Kitchen Environment

• Tabletop Environment

^{*} Cohen, Sucan, Chitta, "A Generic Infrastructure for Benchmarking Motion Planners", IROS 2012, Portugal

Benchmarking

Applications: Kinematic Workspace Analysis

- Robot Design Evaluation
- Robot Workspace Placement

Kinematic Workspace Analysis

Reachable in collision-free way (% of total)

MoveIt!

- Applications Pick and Place
 - Integrated Grasping, Planning, Perception and Execution

User API

• Really simple API (e.g. moving an arm):

```
move_group_interface::MoveGroup group("arm");
group.setRandomTarget();
group.move();
```


MoveIt!

- New Architecture (different from arm navigation)
 - ✓ Minimize transport and messaging overhead Single process for planning and perception, shares environment representation (planning scene) vs. multiple ROS nodes each performing individual functions
 - Computation Core capabilities (e.g. motion planning, kinematics, etc.)
 are setup in C++ libraries
 - Communication and Configuration through ROS
 - Emphasis on speed and efficiency parallelize collision checking, kinematics, etc.

MoveIt!

- Capabilities (differences to arm navigation)
 - Collision Checking
 - ✓ Parallelizable
 - ✓ can switch between different types of collision checkers
 - ✓ cleaner C++ interface
 - Motion Planning
 - ✓ plugin based C++ interface (in addition to ROS interface)
 - ✓ Parallelizable
 - ✓ planning pipeline includes trajectory smoothing

Highlights

Technical

Performance

- Single process sharing environment representation
- Parallelizable collision checking and kinematics
- Parallelizable pick and place (upcoming capability)

Integrated Perception for Environment Representation

- Can incorporate any source of point clouds
- Fast self-filtering and environment representation

Reactive Motion Planning

Safer operation in collaborative environments

Highlights

User Friendly

- Easy configuration for new robots
- Graphical User Interfaces
- Better Visualization and Introspection
- Easy to use C++ API
- Python bindings

Highlights

- Integrated Applications
 - Collision-free Motion Planning and Execution
 - * Kinematic Analysis/ Reachability Analysis
 - Benchmarking
- More applications in development ...
 - Pick and Place more about this in afternoon session

Documentation - Wiki

Github Repository

Issue Tracking

Community

• <u>moveit-users@googlegroups.com</u> - questions related to how you can use MoveIt!

Where are we going?

- MoveIt!

- ✓ what does it take to use MoveIt! in products
- ✓ interest in enterprise level, supported versions of MoveIt! and associated capabilities in ROS?

More information

Email: moveit@willowgarage.com

