
Sachin Chitta, Ioan Sucan, Acorn Pooley

with contributions from: Dave Coleman, Suat Gedikli, Mario Prats,
Matei Ciocarlie, Kaijen Hsiao, Jon Binney, Adam Leeper, Julius

Kammerl, David Gossow, Vincent Rabaud, Dave Hershberger and the
ROS and PR2 communities

What is MoveIt!

•MoveIt!- Software for building mobile manipulation
applications

❖ Motion Planning, Kinematics, Collision Checking integrated with
Perception, Grasping, Control and Navigation for Mobile
Manipulation

2

Motivation
•Build state of the art software platform for robotics

applications and research

•“Simple things should be easy”
❖ Provide out-of-the-box experience

• easy to setup with new robots - Setup Assistant

❖ Easy to use APIs - C++ and Python

•“Allow users to dive deeper to address harder
problems”

❖ Flexible platform - easy to add new components

•Performance
❖ design for high performance

3

Motivation

•Developing new higher-level capabilities is time-consuming
❖ building every capability from scratch is a waste of effort

•Environment awareness critical for new applications
❖ Integrated 3D perception can provide situational awareness, improving

safety, especially in human-robot collaborative tasks

•Motion Planning important for dynamic changing
environments

❖ essential for maintaining safety and performance in human-robot
collaborative tasks

•Constrained manipulation tasks are hard to solve
❖ increasingly complex types of constraints need to be handled

4

MoveIt!: Evolution

•MoveIt! has evolved from the arm_navigation and grasping
pipeline set of stacks

❖ essentially a rewrite from scratch

❖ ROS API almost the same

❖ incorporates lessons learnt

5

Mobile Manipulation: State of the art

6

Chitta, Jones, Ciocarlie, Hsiao, Sucan, 2011

http://www.rosindustrial.org
http://www.rosindustrial.org

Robots Using Our Software

7

Application - ROS-Industrial

8

*collaboration between Willow Garage, SWRI and Yaskawa
http://www.rosindustrial.org

http://www.rosindustrial.org
http://www.rosindustrial.org

MoveIt!

9

Application - ROS-Industrial

10

Rob@Work running MoveIt!

8X

MoveIt!

•Technical Capabilities
❖ Collision Checking: fast and flexible

❖ Integrated Kinematics

❖ Motion Planning

• fast, good quality paths

• kinematic constraints

❖ Integrated Perception for Environment Representation

❖ Standardized Interfaces to Controllers

❖ Execution and Monitoring

❖ Kinematic Analysis

11

MoveIt!

12

Collision Checking

•FCL - Flexible Collision Library*
❖ parallelizable collision checking

❖ Maximum about 2-3,000 full body collision checks
for the PR2 per second

✓ with realtime sensor data

❖ + high fidelity mesh model

•Proximity Collision Detection
❖ Uses 3D distance transform to determine distance

to nearest obstacle and gradient

❖ + very fast - 40 to 80,000 collision checks per
second for the full body of the PR2

❖ - not as accurate

13

*Pan, Sucan, Chitta, Manocha - 2012

Motion Planning

•Plugin interface for planners

•Integration with robots through MoveIt!

•Automatically configured using the MoveIt! Setup
Assistant

❖ Sampling based planners (OMPL)

❖ Search Based Planning Library (SBPL)

14

*http://ompl.kavrakilab.org

*http://www.ros.org/wiki/sbpl

*OMPL - Sucan, Moll, Kavraki (Rice University), SBPL - Max Likhachev
(CMU)

http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
http://ompl.kavrakilab.org

Easy Setup and Configuration

15

Easy Setup and Configuration

16

Easy Setup and Configuration

17

Easy Setup and Configuration

18

Easy Setup and Configuration

19
Live Demo by Dave Coleman later today!!

Integrating Perception

20

Octomap: octomap.sf.net
Point Cloud Library: pointclouds.org

Reactive Motion

21

* Live Demo later!!

Constraint Representation

22

❖ Joint Constraints

❖ Position Constraints

❖ Orientation Constraints

❖ Visibility Constraints

Orientation Constraints

23

Applications: Benchmarking

24

could represent data obtained directly from the sensors
on a robot.

2) Robot - The particular robot used for the benchmark
experiments is specified using the ROS robot descrip-
tion formats.

3) Goals - Associated with the environment is a set of
goals for motion planning, e.g., goals may be specified
in areas of the environment where objects may be
typically found. A robot-agnostic goal specifies the
desired position and orientation for a particular part
of the robot, e.g., the end-effector or tool of the
robot. These goals may need to be adjusted to account
for the geometry of individual robots. Robot specific
goals position individual robots in desired poses and
need to be specifically implemented for each robot.
Goals also include constraints on the different links or
joints of the robot. The current implementation of our
benchmarking approach allows for the specification of
position and orientation constraints on the links of a
robot, joint constraints restricting the range of motion
of a joint and visibility constraints that allow sensors
to maintain visibility of links on the robot or of regions
in the environment.

4) Robot Start State - The robot start state is specific to
each robot and provides complete information on the
state of the robot at the start of a motion plan.

The benchmark problems are designed to exercise the
planners through a wide-range of scenarios. Some of the
environments were setup with the express intention of testing
the performance of planners in difficult situations, e.g the
narrow passageway problem. Note that we do not intend
for this set of benchmarks to be the final set of exhaustive
benchmarks that all planners will be run against. Instead, we
hope, with the help of the community to build upon this set
and include environments and problems that exercise other
capabilities of planners, e.g., dealing with dynamic obstacles
or uncertainty. We will now describe in detail the full set
of example benchmark experiments that we have currently
designed and configured.

A. Testing Environments
Fig. 4, Fig. 5, Fig. 6 and Fig. 7 illustrate the sample

environments that we use in all our experiments. The robot
used in all experiments is the simulated PR2 robot. The
PR2 is a state of the art mobile manipulation robot with an
omni-directional base, two arms and parallel jaw grippers.
The robot also has multiple sensors including a RGB-D
sensor, two laser scanners, an IMU, tactile sensors and stereo
cameras.

The environments represent just a sample of the types
of scenarios that mobile manipulation robots can expect to
find in typical human environments. The first environment
(Fig. 4) represents a scenario where the robot needs to pickup
objects from a shelf containing multiple parts. The second
environment (Fig. 5) represents a typical kitchen scenario
where the robot may be expected to pickup objects from
multiple places on the countertop or in the shelves. The third

Fig. 4. The INDUSTRIAL benchmark environment: The pink spheres
indicate desired goal locations for the right end-effector of the PR2 robot.
The arrows indicate the desired orientation of the end-effector.

Fig. 5. The KITCHEN benchmark environment. This environment is
human-scale.

environment (Fig. 6) represents a scenario where the robot
is expected to move its arm through a narrow passageway.
The position of the wall restricts the workspace available
for the arm considerably. The fourth environment (Fig. 7)
again represents a typical kitchen environment where the
robot might be expected to move an object around on a table.

The motion planning problems we chose to implement for
this paper are derived from typical pick and place actions
in human environments. Our problems specify desired goal
configurations for the PR2’s end effector in typical positions
from where objects may be picked up or where objects may
be placed down. Fig. 4, Fig. 5 and Fig. 7 show some of
the desired goal configurations for the right end-effector of
the PR2 robot (indicated by the red numbered markers).
The goals in Fig. 6 are designed to force the right arm
of the robot to move through the narrow constrained space
between the robot and the wall. Additional constraints may
be separately specified in the motion planning problem, e.g.,
a dual-arm motion of the robot may require the two arms to

could represent data obtained directly from the sensors
on a robot.

2) Robot - The particular robot used for the benchmark
experiments is specified using the ROS robot descrip-
tion formats.

3) Goals - Associated with the environment is a set of
goals for motion planning, e.g., goals may be specified
in areas of the environment where objects may be
typically found. A robot-agnostic goal specifies the
desired position and orientation for a particular part
of the robot, e.g., the end-effector or tool of the
robot. These goals may need to be adjusted to account
for the geometry of individual robots. Robot specific
goals position individual robots in desired poses and
need to be specifically implemented for each robot.
Goals also include constraints on the different links or
joints of the robot. The current implementation of our
benchmarking approach allows for the specification of
position and orientation constraints on the links of a
robot, joint constraints restricting the range of motion
of a joint and visibility constraints that allow sensors
to maintain visibility of links on the robot or of regions
in the environment.

4) Robot Start State - The robot start state is specific to
each robot and provides complete information on the
state of the robot at the start of a motion plan.

The benchmark problems are designed to exercise the
planners through a wide-range of scenarios. Some of the
environments were setup with the express intention of testing
the performance of planners in difficult situations, e.g the
narrow passageway problem. Note that we do not intend
for this set of benchmarks to be the final set of exhaustive
benchmarks that all planners will be run against. Instead, we
hope, with the help of the community to build upon this set
and include environments and problems that exercise other
capabilities of planners, e.g., dealing with dynamic obstacles
or uncertainty. We will now describe in detail the full set
of example benchmark experiments that we have currently
designed and configured.

A. Testing Environments
Fig. 4, Fig. 5, Fig. 6 and Fig. 7 illustrate the sample

environments that we use in all our experiments. The robot
used in all experiments is the simulated PR2 robot. The
PR2 is a state of the art mobile manipulation robot with an
omni-directional base, two arms and parallel jaw grippers.
The robot also has multiple sensors including a RGB-D
sensor, two laser scanners, an IMU, tactile sensors and stereo
cameras.

The environments represent just a sample of the types
of scenarios that mobile manipulation robots can expect to
find in typical human environments. The first environment
(Fig. 4) represents a scenario where the robot needs to pickup
objects from a shelf containing multiple parts. The second
environment (Fig. 5) represents a typical kitchen scenario
where the robot may be expected to pickup objects from
multiple places on the countertop or in the shelves. The third

Fig. 4. The INDUSTRIAL benchmark environment: The pink spheres
indicate desired goal locations for the right end-effector of the PR2 robot.
The arrows indicate the desired orientation of the end-effector.

Fig. 5. The KITCHEN benchmark environment. This environment is
human-scale.

environment (Fig. 6) represents a scenario where the robot
is expected to move its arm through a narrow passageway.
The position of the wall restricts the workspace available
for the arm considerably. The fourth environment (Fig. 7)
again represents a typical kitchen environment where the
robot might be expected to move an object around on a table.

The motion planning problems we chose to implement for
this paper are derived from typical pick and place actions
in human environments. Our problems specify desired goal
configurations for the PR2’s end effector in typical positions
from where objects may be picked up or where objects may
be placed down. Fig. 4, Fig. 5 and Fig. 7 show some of
the desired goal configurations for the right end-effector of
the PR2 robot (indicated by the red numbered markers).
The goals in Fig. 6 are designed to force the right arm
of the robot to move through the narrow constrained space
between the robot and the wall. Additional constraints may
be separately specified in the motion planning problem, e.g.,
a dual-arm motion of the robot may require the two arms to

Fig. 6. The NARROW PASSAGE benchmark environment.

Fig. 7. A set of goals for manipulation tasks on a table in the TABLETOP
environment.

move in a constrained manner. Note that the desired goals
do not constraint the redundant degrees of freedom of the
PR2 robot arm in any manner. Each planner is thus free to
choose the joint configuration that satisfies the desired goal
configuration, e.g., by using inverse kinematics.

The goal are not specified as a single pose for the end-
effector. They are instead specified as goal regions, i.e., small
regions in SE3 where the robot’s end-effector should be
able to move to. Goal regions provide the planners with a
small amount of tolerance in terms of determining when they
are at the goal. Planners can choose to sample individual
goal poses inside the goal regions or use the goal regions
directly if possible. The size and shape of the goal regions
are parameters that can be set based on the overall task
being executed by the robot, e.g., grasping certain objects
might require very tight tolerances on the goal region for

Fig. 8. The collision checking models used by the two planning libraries
- SBPL (left) and OMPL (right)

the planners.

B. Planners

To validate our benchmarking approach, we tested it with
two types of motion planners: search-based planners from the
SBPL library [23] and randomized planners from the OMPL
library [20].

The underlying search-based planner used here is the
ARA* planner [24]. A set of discretized motion primitives
in joint or cartesian space are used with the planner to
generate motion plans for the arms of a robot [25], [26].
An inflated heuristic derived from a 3D Djikstra search in
the environment is used to accelerate this planning process.
The ARA* planner provides bounds on sub-optimality with
respect to the graph that represents the planning problem.
We configured the search-based planners to return the first
solution they find and set the sub-optimality bound parameter
� to 100. The ARA* planner is an anytime planner capable
of improving the solutions that it finds over time but we
chose not to use these capabilities of the planner. The
cost function for the search-based planner incorporated the
distance traveled in joint space.

The randomized planning approaches tested here are
KPIECE [27], LBKPIECE [27], SBL [28], RRT* [29], RRT
and RRT-Connect [30]. The cost function for RRT* is again
the distance traveled in joint space. RRT* was configured to
return the first solution that was found. All these planners
are implemented in the OMPL library and use the new FCL
collision checking library [31].

It should be noted here that the performance of planners
can depend on a large number of factors. In particular,
collision checking is a critical component of motion planning
and also often the most expensive. The two motion planning
libraries we benchmark use different collision representations
for the robot(Figure 8) and also employ different approaches
to the collision representation for the environment. The
collision representation used by the search-based planners
for representing the robot is more conservative but an order
of magnitude faster than the mesh-based representation used
for the randomized planners. However, the representation of
the environment for the search-based planners uses a distance

Fig. 6. The NARROW PASSAGE benchmark environment.

Fig. 7. A set of goals for manipulation tasks on a table in the TABLETOP
environment.

move in a constrained manner. Note that the desired goals
do not constraint the redundant degrees of freedom of the
PR2 robot arm in any manner. Each planner is thus free to
choose the joint configuration that satisfies the desired goal
configuration, e.g., by using inverse kinematics.

The goal are not specified as a single pose for the end-
effector. They are instead specified as goal regions, i.e., small
regions in SE3 where the robot’s end-effector should be
able to move to. Goal regions provide the planners with a
small amount of tolerance in terms of determining when they
are at the goal. Planners can choose to sample individual
goal poses inside the goal regions or use the goal regions
directly if possible. The size and shape of the goal regions
are parameters that can be set based on the overall task
being executed by the robot, e.g., grasping certain objects
might require very tight tolerances on the goal region for

Fig. 8. The collision checking models used by the two planning libraries
- SBPL (left) and OMPL (right)

the planners.

B. Planners

To validate our benchmarking approach, we tested it with
two types of motion planners: search-based planners from the
SBPL library [23] and randomized planners from the OMPL
library [20].

The underlying search-based planner used here is the
ARA* planner [24]. A set of discretized motion primitives
in joint or cartesian space are used with the planner to
generate motion plans for the arms of a robot [25], [26].
An inflated heuristic derived from a 3D Djikstra search in
the environment is used to accelerate this planning process.
The ARA* planner provides bounds on sub-optimality with
respect to the graph that represents the planning problem.
We configured the search-based planners to return the first
solution they find and set the sub-optimality bound parameter
� to 100. The ARA* planner is an anytime planner capable
of improving the solutions that it finds over time but we
chose not to use these capabilities of the planner. The
cost function for the search-based planner incorporated the
distance traveled in joint space.

The randomized planning approaches tested here are
KPIECE [27], LBKPIECE [27], SBL [28], RRT* [29], RRT
and RRT-Connect [30]. The cost function for RRT* is again
the distance traveled in joint space. RRT* was configured to
return the first solution that was found. All these planners
are implemented in the OMPL library and use the new FCL
collision checking library [31].

It should be noted here that the performance of planners
can depend on a large number of factors. In particular,
collision checking is a critical component of motion planning
and also often the most expensive. The two motion planning
libraries we benchmark use different collision representations
for the robot(Figure 8) and also employ different approaches
to the collision representation for the environment. The
collision representation used by the search-based planners
for representing the robot is more conservative but an order
of magnitude faster than the mesh-based representation used
for the randomized planners. However, the representation of
the environment for the search-based planners uses a distance

• Industrial Environment

• Narrow Passage Environment

• Kitchen Environment

• Tabletop Environment

* Cohen, Sucan, Chitta, “A Generic Infrastructure for Benchmarking Motion
Planners”, IROS 2012, Portugal

Benchmarking

25
!"

#$%&'()*+,-$./01.

More in Talk by Ryan Luna and Ioan Sucan (later today)

Applications: Kinematic Workspace Analysis

26

•Robot Design Evaluation

•Robot Workspace Placement

Kinematic Workspace Analysis

27

MoveIt!

•Applications - Pick and Place
❖ Integrated Grasping, Planning, Perception and Execution

28

User API

•Really simple API (e.g. moving an arm):

29

 move_group_interface::MoveGroup group("arm");
 group.setRandomTarget();
 group.move();

MoveIt!

•New Architecture (different from arm navigation)
✓ Minimize transport and messaging overhead - Single process for

planning and perception, shares environment representation
(planning scene) vs. multiple ROS nodes each performing individual
functions

❖ Computation - Core capabilities (e.g. motion planning, kinematics, etc.)
are setup in C++ libraries

❖ Communication and Configuration through ROS

❖ Emphasis on speed and efficiency – parallelize collision checking,
kinematics, etc.

30

MoveIt!

•Capabilities (differences to arm navigation)
❖ Collision Checking

✓ Parallelizable

✓ can switch between different types of collision checkers

✓ cleaner C++ interface

- Motion Planning
✓ plugin based C++ interface (in addition to ROS interface)

✓ Parallelizable

✓ planning pipeline includes trajectory smoothing

31

Highlights

32

•Technical

- Performance
❖ Single process sharing environment representation

❖ Parallelizable collision checking and kinematics

❖ Parallelizable pick and place (upcoming capability)

- Integrated Perception for Environment Representation
❖ Can incorporate any source of point clouds

❖ Fast self-filtering and environment representation

- Reactive Motion Planning
❖ Safer operation in collaborative environments

Highlights

33

•User Friendly
❖ Easy configuration for new robots

❖ Graphical User Interfaces

❖ Better Visualization and Introspection

❖ Easy to use C++ API

❖ Python bindings

Highlights

34

•Integrated Applications
❖ Collision-free Motion Planning and Execution

❖ Kinematic Analysis/ Reachability Analysis

❖ Benchmarking

•More applications in development ...
❖ Pick and Place - more about this in afternoon session

Documentation - Wiki

35

Github Repository

36

Issue Tracking

37

Community

38

•moveit-users@googlegroups.com - questions related to how
you can use MoveIt!

mailto:moveit-users@googlegroups.com
mailto:moveit-users@googlegroups.com

Where are we going?

39

- MoveIt!
✓ what does it take to use MoveIt! in products
✓ interest in enterprise level, supported versions of MoveIt! and associated

capabilities in ROS?

More information

40

Email: moveit@willowgarage.com

mailto:moveit@willowgarage.com
mailto:moveit@willowgarage.com

