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Motion planning problems are hard
PROBLEM COMPLEXITY

Geometric Constraints:

Dynamics Constraints:

Discrete Transitions and Dynamics Constraints:

Sofa Mover (3DOF)
Piano Mover (6DOF)
n Disks in the Plane
n Link Chain in 3D
Generalized Mover

Point with Newtonian Dynamics

Hybrid Systems

Polygon Dubin’s Car (Linear)
Nonlinear

PSPACE-Complete [HSS87]

O(n2+ε) - not implemented [HS96]
Polynomial – no practical algorithm [SS83] 
NP-Hard [SS83] 

NP-Hard [DXCR93]

Undecidable [Alur et. al 95]

PSPACE-Complete [Canny88]

Decidable [CPK08]
Unknown, probably undecidable
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Exact, approximate, and
probabilistically complete algorithms 

Method Advantage Disadvantage

exact theoretically 
insightful impractical

cell decomposition easy does not scale easily

control-based online, very robust requires good 
trajectory

potential fields online, easy slow or fail

sampling-based fast and effective cannot recognize 
impossible query
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Sampling-based planning algorithms
Roadmaps:
PRM [Kavraki, Svestka, Latombe, Overmars ’96]
Obstacle based PRM [Amato, Bayazit, Dale ’98]
Medial Axis PRM   [Wilmarth, Amato, Stiller ’98]
Gaussian PRM [Boor, Overmars, van der Stappen ’01]
Bridge Building Planner  [Hsu, Jiang, Reif, Sun ’03]
Hierarchical PRM  [Collins, Agarwal, Harer ’03]
Improving PRM Roadmaps [Morales, Rodriguez, Amato ’03]
Entropy guided Path-planning [Burns, Brendan, Brock ’04]
RESAMPL  [Rodriguez, Thomas, Pearce, Amato ’06]
Probab. foundations of PRM [Hsu, Latombe, Kurniawati ’06]
Adaptive PRM [Kurniawati et al. ’08]
Multi-model planning [Hauser et al. ’10]
Small-tree PRM [Lanteigne et al. ’11]
Rapidly-exploring Random Roadmap [Alterovitz et al. ’11]
and many others

Trees:
EST [Hsu et al. ’97, ’00]
RRT [Kuffner, LaValle ’98]
RRT-Connect [Kuffner, LaValle ’00]
SBL  [Sanchez, Latombe ’01]
RRF [Li, Shie ’02]
Guided EST [Phillips et al. ’03]
PDRRT [Ranganathan, Koenig ’04]
SRT [Plaku et al. ’05]
DDRRT [Yershova et al. ’05]
ADDRRT [Jaillet et al. ’05]
RRT-Blossom [Kalisiak, van Panne ’06]
PDST [Ladd, Kavraki  ’06]

Trees (continued):
Utility RRT [Burns, Brock ’07]
GRIP [Bekris, Kavraki ’07]
Multiparticle RRT [Zucker et al. ’07]
TC-RRT [Stillman et al. ’07]
RRT-JT [Vande Wege et al. ’07]
DSLX [Plaku, Kavraki, Vardi ’08]
KPIECE [Șucan, Kavraki ’08]
RPDST [Tsianos, Kavraki ’08]
BiSpace [Diankov et al. ’08]
GRRT [Chakravorty, Kumar ’09]
IKBiRRT [Berenson et al. ’09]
CBiRRT [Berenson et al. ’09]
J+RRT [Vahrenkamp ’09]
RG-RRT [Shkolnik et al. ’09]
PCA-RRT [Li, Bekris ’10]
T-RRT [Jaillet et al. ’10]
SyCLoP [Plaku et al. ’10]
RRT* [Karaman et al, ’10]
RRG [Karaman et al, ’10]
PRM* [Karaman et al, ’10]
Bi-RRT* [Akgun et al. ’11]
SR-RRT [Lee et al. ’12]
RRT# [Arslan et al. ’13]
STRIDE [Gipson et al. ’13]
SPARS [Bekris et al. ’13]
and many others

bold = included with OMPL
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Point robot in 2-D

a robot state
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: nodes, random states

Operation of PRM 
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Operation of PRM 

:edges, paths computed by local planner
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plan a path: 1.connect start & goal to roadmap
2.perform graph search

start

goal

Answering queries
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Operation of PRM 

 feasible path computed by local planner
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start

goal

- Repeat until goal is connected to tree.
- Bi-directional trees are possible when considering only geometric constraints.

Sampling-based tree planner operation
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Main features of OMPL
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OMPL in a nutshell	

• Common core for sampling-based motion planners

• Includes commonly-used heuristics

• Takes care of many low-level details often skipped in corresponding papers

• Intended for use in:
• Education
• Research
• Industry
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Abstract interface to core sampling-based 
motion planning concepts

• state space / control space

• state validator (e.g., collision checker)

• sampler

• goal (problem definition)

• planner

• ...

except robot & workspace...
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States & state spaces

abstract state space

API requirements:
- StateType
- alloc/free state
- distance
- interpolation
- state equality

rotation (2D,3D) translation (ℝn)

compound used for:
- rigid body motions
- manipulators
- ... 14



Control spaces & controls

• Needed only for control-based planning

• Analogous to state spaces and states:

abstract control space

ℝn

API requirements:
- ControlType
- alloc/free control
- equality

compound
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State validators

• Problem-specific; must be defined by user or
defined by layer on top of OMPL core  →  MoveIt!

• Checks whether state is collision-free, joint angles and velocities are within 
bounds, etc.

• Optionally, specific state validator implementations can return

• distance to nearest invalid state (i.e., nearest obstacle)

• gradient of distance

Can be exploited by planners / samplers!
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Samplers

• For every state space there needs to be a state sampler

• State samplers need to support the following:

• sample uniform

• sample uniform near given state

• sample from Gaussian centered at given state
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Many ways to get sampling wrong

naïve & wrong:

Example: uniformly sampling 3D orientations

correct:

Images from Kuffner, ICRA ’04
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Similar issues occur for nearest neighbors

• k nearest neighbors can be computed efficiently with kd-trees in 
low-dimensional, Euclidean spaces. 

• In high-dimensional spaces approximate nearest neighbors much better

• In non-Euclidean spaces (e.g., any space that includes rotations), other data 
structures are necessary
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Valid state samplers

• Valid state samplers combine low-level state 
samplers with the validity checker

• Simplest form: sample at most n times to get 
valid state or else return failure

• Other sampling strategies:

• Try to find samples with a large clearance

• Try to find samples near obstacles
(more dense sampling in/near narrow 
passages)

x
x

x

x
x

x
x

x
x

x
x
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Goals

can only tell whether state 
satisfies Goal condition

provides distance 
to goal region

can sample from 
goal region

single goal state

multiple goal states

multiple goal states, 
computed in

separate thread

GoalSampleableRegion

GoalLazySamples

GoalState

GoalRegion

Goal

GoalStates
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OMPL planning algorithms

• Take as input a problem definition:
object with one or more start states and a goal object 

• Planners need to implement two methods:

• solve:
– takes PlannerTerminationCondition object as argument
– termination can be based on timer, external events, ...

• clear:
clear internal data structures, free memory, ready to run solve again
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Many planners available in OMPL

Planner

geometric planning planning with controls
KPIECE, BKPIECE, LBKPIECE
PRM, LazyPRM
RRT, RRTConnect, LazyRRT
EST, SBL
PDST
STRIDE

Optimizing planners:
PRM*
RRT*, BallTreeRRT*
T-RRT
SPARS, SPARS-2

KPIECE
RRT
EST
Syclop
PDST

       = available soon!
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Minimal code example
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Benchmarking

(s
ec
.)
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OMPL.app
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Sample OMPL.app problems
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Resources to get started with OMPL
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OMPL online

• Web site: 
http://ompl.kavrakilab.org

• Mailing lists:

• Developers: ompl-devel@lists.sourceforge.net

• Users: ompl-users@lists.sourceforge.net

• Public Mercurial repository: 
http://ompl.hg.sourceforge.net:8000/hgroot/ompl/ompl

Online at:
http://ompl.kavrakilab.org
Contact us at:
ompl-devel@lists.sourceforge.net
ompl-users@lists.sourceforge.net
Public repositories at:
https://bitbucket.org/ompl
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OMPL for education

• Programming assignments centered around OMPL, available upon request.

• Ongoing educational assessment.

• Already in use in several robotics / motion planning classes.

Happy OMPL users: students in the Algorithmic Robotics class at Rice, Fall 2010
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Discussion

• OMPL actively developed, but ready for general use

• Can easily implement new algorithms from many reusable components

• Simple high-level interface:

• Can treat motion planner almost as a black box

• Easy enough that non-experts can use it

• Interface generic enough to be extensible in many ways

We want your contributions!
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