OMPL: The Open Motion Planning Library

Mark Moll and Lydia E. Kavraki
Department of Computer Science
Rice University

Houston, TX

USA




Motion planning problems are hard

PROBLEM

COMPLEXITY

Geometric Constraints:
Sofa Mover (3DOF)
Piano Mover (6DOF)
n Disks in the Plane
n Link Chain in 3D

Generalized Mover

Dynamics Constraints:

Point with Newtonian Dynamics
Polygon Dubin’s Car (Linear)

Nonlinear

O(n?*¢) - not implemented [HS96]

Polynomial — no practical algorithm [SS83]
NP-Hard [SS83]
PSPACE-Complete [HSS87]

PSPACE-Complete [Canny88]

NP-Hard [DXCR93]
Decidable [CPKO08§]

Unknown, probably undecidable

Discrete Transitions and Dynamics Constraints:

Hybrid Systems

Undecidable [Alur et. al 95]



Exact, approximate, and
probabilistically complete algorithms

Method Advantage Disadvantage
exact theoretically impractical
insightful P
cell decomposition easy does not scale easily
control-based online, very robust FeqUIres good
trajectory
potential fields online, easy slow or falil

cannot recognize

sampling-based fast and effective . .
impossible query



Sampling-based planning algorithms

Roadmaps:

PRM [Kavraki, Svestka, Latombe, Overmars ’96]
Obstacle based PRM [Amato, Bayazit, Dale ’98]

Medial Axis PRM [Wilmarth, Amato, Stiller 98]

Gaussian PRM [Boor, Overmars, van der Stappen ’01]
Bridge Building Planner [Hsu, Jiang, Reif, Sun ’03]
Hierarchical PRM [Collins, Agarwal, Harer '03]

Improving PRM Roadmaps [Morales, Rodriguez, Amato '03]
Entropy guided Path-planning [Burns, Brendan, Brock '04]
RESAMPL [Rodriguez, Thomas, Pearce, Amato '06]
Probab. foundations of PRM [Hsu, Latombe, Kurniawati ’06]
Adaptive PRM [Kurniawati et al. ’08]

Multi-model planning [Hauser et al. ’10]

Small-tree PRM [Lanteigne et al. ’11]

Rapidly-exploring Random Roadmap [Alterovitz et al. "11]
and many others

Trees:

EST [Hsu et al. ’97, ’00]

RRT [Kuffner, LaValle '98]
RRT-Connect [Kuffner, LaValle '00]
SBL [Sanchez, Latombe ’01]

RRF [Li, Shie '02]

Guided EST [Phillips et al. "03]
PDRRT [Ranganathan, Koenig ’04]
SRT [Plaku et al. '05]

DDRRT [Yershova et al. '05]
ADDRRT [Jaillet et al. ’05]
RRT-Blossom [Kalisiak, van Panne ’06]
PDST [Ladd, Kavraki ’06]

Trees (continued):

Utility RRT [Burns, Brock ’07]
GRIP [Bekris, Kavraki ’07]
Multiparticle RRT [Zucker et al. ’07]
TC-RRT [Stillman et al. ’07]
RRT-JT [Vande Wege et al. '07]
DSLX [Plaku, Kavraki, Vardi ’08]
KPIECE [Sucan, Kavraki '08]
RPDST [Tsianos, Kavraki '08]
BiSpace [Diankov et al. ’08]
GRRT [Chakravorty, Kumar ’09]
IKBIiRRT [Berenson et al. ’09]
CBIRRT [Berenson et al. ’09]
J+RRT [Vahrenkamp ’09]
RG-RRT [Shkolnik et al. ’09]
PCA-RRT [Li, Bekris '10]
T-RRT [Jaillet et al. ’10]
SyCLoP [Plaku et al. ’10]
RRT* [Karaman et al, ’10]
RRG [Karaman et al, ’10]
PRM* [Karaman et al, ’10]
Bi-RRT* [Akgun et al. ’11]
SR-RRT [Lee et al. "12]

RRT# [Arslan et al. ’13]
STRIDE [Gipson et al. ’13]
SPARS [Bekris et al. ’13]

and many others

bold = included with OMPL



Point robot in 2-D

Ow.

a robot state



Operation of PRM

@ : nodes, random states



Operation of PRM

:edges, paths computed by local planner



Answering queries

o start

plan a path: 1.connect start & goal to roadmap
2.perform graph search



Operation of PRM

- === feasible path computed by local planner



Sampling-based tree planner operation

- Repeat until goal is connected to tree.
- Bi-directional trees are possible when considering only geometric constraints.

10



Main features of OMPL

11



OMPL in a nutshell

- Common core for sampling-based motion planners

* Includes commonly-used heuristics

- Takes care of many low-level details often skipped in corresponding papers

* |Intended for use in:
 Education
 Research

* Industry

12



Abstract interface to core sampling-based
motion planning concepts

- state space / control space

- state validator (e.g., collision checker)
- sampler

- goal (problem definition)

* planner

except robot & workspace...

13



States & state spaces

API requirements:
- StateType
alloc/free state
distance
interpolation
state equality

|

[ abstract state space )

/ AN

[ rotation (2D,3D) J [ translation (R") J
' used for:
[ Compound - rigid body motions

- manipulators

14



Control spaces & controls

- Needed only for control-based planning

* Analogous to state spaces and states:

API requirements:

[abstract control space ] >

0 )

- ControlType
] - alloc/free control
- equality
compounad J

15



State validators

« Problem-specific; must be defined by user or
defined by layer on top of OMPL core — Movelt!

- Checks whether state is collision-free, joint angles and velocities are within
bounds, etc.

- Optionally, specific state validator implementations can return
- distance to nearest invalid state (i.e., nearest obstacle)
» gradient of distance

Can be exploited by planners / samplers!

16



Samplers

* For every state space there needs to be a state sampler

- State samplers need to support the following:

« sample uniform

- sample uniform near given state

- sample from Gaussian centered at given state

e -

17



Many ways to get sampling wrong

Example: uniformly sampling 3D orientations

Images from Kuffner, ICRA °04
18



Similar issues occur for nearest neighbors

* k nearest neighbors can be computed efficiently with kd-trees in
low-dimensional, Euclidean spaces.

* In high-dimensional spaces approximate nearest neighbors much better

- In non-Euclidean spaces (e.g., any space that includes rotations), other data
structures are necessary

19



Valid state samplers

- Valid state samplers combine low-level state
samplers with the validity checker

- Simplest form: sample at most n times to get
valid state or else return failure

- Other sampling strategies:
» Try to find samples with a large clearance

* Try to find samples near obstacles
(more dense sampling in/near narrow
passages)

20



Goals

Goal can only tell whether state
satisfies Goal condition

[ GoalRegion

T

[GoalSampIeableRegion] can sample from

goal region
/' \

provides distance
to goal region

[

GoalState ] [ GoalStates ] multiple goal states

single goal state

GoalLazySamples multiple goal states,
computed in

separate thread

21



OMPL planning algorithms

- Take as input a problem definition:
object with one or more start states and a goal object

* Planners need to implement two methods:

- solve:
— takes PlannerTerminationCondition object as argument
— termination can be based on timer, external events, ...

* clear:
clear internal data structures, free memory, ready to run solve again

22



Many planners available in OMPL

[ Planner

e

geometric planning

KPIECE, BKPIECE, LBKPIECE
°RM, LazyPRM

RRT, RRTConnect, LazyRRT
EST, SBL

PDST

STRIDE

Optimizing planners:
PRM*

RRT*, BallTreeRRT*
T-RRT

SPARS, SPARS-2

planning with controls

KPIECE
RRT
EST
Syclop
PDST

Bl - qvailable soon!

23



Minimal code example

O 0 939 O W & W N -

p—
()

11
12
13
14
15
16

space = SE3StateSpace ()
# set the bounds (code omitted)

ss = SimpleSetup (space)
# "isStateValid" is a user-supplied function
ss.setStateValidityChecker (i1sStateValid)

start = State (space)

goal = State (space)

# set the start & goal states to some values
# (code omitted)

ss.setStartAndGoalStates (start, goal)
solved = ss.solve (1.0)
if solved:

print setup.getSolutionPath ()

24



10

time (sec.)

Benchmarking

1 2 T T T T T T T 1 O 0 .
- :‘: -
£ 80}
| . § _
* . 60
+ i_ 4 :_ S_\O’
+ [
6 } °
f —:!:— ! T : g
| I | | 8
+ | : | | 40
4 + : : '
‘% I
|
! i T I
X | | | : 20
] : _i_ | e
I I T
I - I
, | e o == o
—— 1 1 I I I L 0
SR o 2AdNEe A I R ) pot & o8
ot o\ Q\C \C o
& \o* * ©e R



OMPL.app

8 00 _ _ : - OMPL.app

—m Planner  Bounding box |

Robot type | Rigid body planning (3D) |

Start pose
Position Rotation

X l64.59 |[}) 000 |/
y 2221 |3} [-90.00 |3)
Z 184 ;) lo.oo |3
Coal pose
Position Rotation

X 259 i l0.00

\
] 'Q.

»
-

y 2321 (i [0.00

-
aD

z -32.16 (s 180.00

. Solve | . Clear Show: ' none . ™ Animate Speed: -




Sample OMPL.app problems




Resources to get started with OMPL

28



The Open Motion Planning Library "
2 | | € ompl.kavrakilab.org ¢ || O |

OMPL Overview Download Documentation Code Issues Community About Blog

The Open Motion Planning Library

OMPL, the Open Motion Planning Library, consists of many state-of-the-art sampling-
based motion planning algorithms. OMPL itself does not contain any code related to, e.g.,
collision checking or visualization. This is a deliberate design choice, so that OMPL is not
tied to a particular collision checker or visualization front end.

OMPL.app, the front-end for OMPL, contains a lightweight wrapper for the FCL and PQP
collision checkers and a simple GUI based on PyQt / PySide. The graphical front-end can
be used for planning motions for rigid bodies and a few vehicle types (first-order and
second-order cars, a blimp, and a quadrotor). It relies on the Assimp library to import a
large variety of mesh formats that can be used to represent the robot and its
environment.

Current version: 0.12.2 Click for citation,
Released: Jan 22, 2013 if you use OMPL in your work

29 E)Send
Contents of This Library Getting Started Other Resources
o OMPL contains implementations of many sampling- ¢ The OMPL primer proy
based algorithms such as PRM, RRT, EST, SBL, KPIECE, sampling-based motio -
SyCLOP, and several variants of these planners. See OMPL. O n I I n e atl
available planners for a complete list. e Download and install u
¢ All these planners operate on very abstractly defined e Learn how to use the € .
state spaces. Many commonly used state spaces are ¢ Demos and tutorials h-t-t -//O m | kavrakl |ab O r
already implemented (e.g., SE2, SE3, R", etc.). e Frequently Asked Qu p . p . . g
e For any state space, different state samplers can be e Familiarize yourself wil
used (e.q., uniform, Gaussian, obstacle based, etc.). throughout OMPL.
e APl overview e Learn how to integrate C t t t-
e Documentation for just the OMPL core library (i.e,, build system. On ac us a [ |
without the “app” layer). e If interested in using P

et ompl-devel@lists.sourceforge. net
News & Events .
e OMPL has been accepted as a mentoring organization for the 2013 Google Summ Om pl - use rS@ | |StS . SOU rcefo rge . net

¢ OMPL has won the 2012 Open Source Software World Grand Challenge!
e An article about OMPL has been accepted for publication in IEEE's Robotics & Autom:
e At ROSCON, Sachin Chitta and loan Sucan gave a talk about Movelt!, the new moti

| cins 0ur. il ey wice veam i e - PypliC repositories at:
https://bitbucket.org/ompl

motion planning.
Physical and Biological Computing Group e Department of Computer Science e Rice Universmy

29


http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
mailto:ompl-devel@lists.sf.net
mailto:ompl-devel@lists.sf.net
mailto:ompl-user@lists.sourceforge.net
mailto:ompl-user@lists.sourceforge.net
https://bitbucket.org/ompl
https://bitbucket.org/ompl

OMPL for education

« Programming assignments centered around OMPL, available upon request.
+ Ongoing educational assessment.

 Already in use in several robotics / motion planning classes.

Happy OMPL users: students in the Algorithmic Robotics class at Rice, Fall 2010

-

- . » -
s | -

v

vl‘

- 5
-

-

-4
-
- ”
= : - : \ 4 - 7 ~ 5
4\ : - l - 5
. : I N
- > N
Fat . ol " . .h
o " - . . -
v . AL - '
-
» 2 -
. .
’



Discussion

OMPL actively developed, but ready for general use

Can easily implement new algorithms from many reusable components

Simple high-level interface:

- Can treat motion planner almost as a black box

- Easy enough that non-experts can use it

Interface generic enough to be extensible in many ways

We want your contributions!

31



Acknowledgements

Rice University:
Lydia Kavraki
Ryan Luna

Matt Maly
Bryant Gipson
Devin Grady
Amit Bhatia

Willow Garage:

loan Sucan
Sachin Chitta

Funding from:
NSF CCLI grant #0920721
NSF [IS grant #0713623

Willow Garage

32



