
Planning	  with	  Experience	  Graphs	  

Mike	  Phillips	  
Carnegie	  Mellon	  University	  

	  
Collaborators	  

Benjamin	  Cohen,	  Andrew	  Dornbush,	  Victor	  Hwang,	  	  
Sachin	  ChiFa,	  Maxim	  Likhachev	  

	  



MoHvaHon	  
Many	  tasks	  are	  repeHHve.	  They	  may	  have	  
different	  starts	  and	  goals,	  but	  have	  the	  
same	  general	  moHon.	  
	  
Examples:	  

–  loading	  a	  dishwasher	  
–  opening	  doors	  
–  moving	  objects	  around	  a	  warehouse	  

•  Robots	  should	  be	  able	  to	  re-‐use	  prior	  
experience	  to	  accelerate	  planning	  

•  Especially	  useful	  for	  high-‐dimensional	  
planning	  problems	  such	  as	  mobile	  
manipula9on	  

2	  



Background	  
•  Find	  a	  collision	  free,	  good	  quality,	  path	  from	  the	  start	  state	  to	  
the	  goal	  state	  

Obstacles	  

goal	  
start	  

3	  



Background	  

Graph	  represenHng	  free	  space	  

goal	  
start	  

4	  



Background	  

goal	  
start	  

Expanded	  (computed)	  states	  

SoluHon	  Path	  (colored	  border)	   5	  



Background	  

goal	  

start	  

•  A	  similar	  scenario	  
•  This	  repeats	  a	  lot	  of	  computaHon!	  

6	  



Experience	  Graphs	  (E-‐Graphs)	  
•  CollecHon	  of	  previously	  computed	  paths	  or	  demonstraHons	  
•  A	  significantly	  smaller	  sub-‐graph	  of	  the	  original	  graph	  
	  

7	  



Experience	  Graphs	  (E-‐Graphs)	  

goal	  

start	  

•  For	  repeHHve	  tasks,	  planning	  with	  E-‐Graphs	  is	  much	  faster	  
	  

8	  



Experience	  Graphs	  (E-‐Graphs)	  

goal	  

start	  

•  For	  repeHHve	  tasks,	  planning	  with	  E-‐Graphs	  is	  much	  faster	  
	  

Theorem	  1:	  Algorithm	  is	  complete	  with	  
respect	  to	  the	  original	  graph	  
	  
Theorem	  2:	  The	  cost	  of	  the	  solu8on	  is	  within	  a	  
given	  bound	  on	  sub-‐op8mality	  

9	  



Experience	  Graphs	  (E-‐Graphs)	  
•  E-‐Graph	  a^er	  three	  runs…	  

10	  



Experience	  Graphs	  (E-‐Graphs)	  
•  E-‐Graph	  a^er	  three	  runs…	  

11	  



goal	  

start	  

Experience	  Graphs	  (E-‐Graphs)	  
•  Using	  E-‐graph	  

–  Very	  few	  states	  expanded	  
–  Completeness	  &	  bounds	  on	  sub-‐op9mality	  w.r.t.	  original	  graph	  

12	  



goal	  

start	  

Experience	  Graphs	  (E-‐Graphs)	  

13	  

•  Reuse	  E-‐Graph	  by:	  
–  Introducing	  a	  new	  heurisHc	  funcHon	  	  
–  HeurisHc	  guides	  the	  search	  toward	  expanding	  states	  on	  the	  E-‐Graph	  



consistent heuristic is one that satisfies the triangle inequality,
hG(s, sgoal) ≤ c(s, s′) + hG(s′, sgoal).

C. Algorithm Detail
The planner maintains two graphs, G and GE . At the high-

level, every time the planner receives a new planning request
the findPath function is called. It first updates GE to account
for edge cost changes and perform some precomputations.
Then it calls the computePath function, which produces a
path π. This path is then added to GE . The updateEGraph
function works by updating any edge costs in GE that have
changed. If any edges are invalid (e.g. they are now blocked
by obstacles) they are put into a disabled list. Conversely, if
an edge in the disabled list now has finite cost it is re-enabled.
At this point, the graph GE should only contain finite edges.
A precomputeShortcuts function is then called which can be
used to compute shortcut edges before the search begins. Ways
to compute shortcuts are discussed in Section V. Finally, our
heuristic hE , which encourages path reuse, is computed.

findPath(sstart, sgoal)
1: updateEGraph(sgoal)
2: π = computePath(sstart, sgoal)

3: GE = GE ∪ π

updateEGraph(sgoal)
1: updateChangedCosts()
2: disable edges that are now invalid
3: re-enable disabled edges that are now valid
4: precomputeShortcuts()

5: compute heuristic hE according to Equation 1

Our algorithm’s speed-up comes from being able to reuse
parts of old paths and avoid searching large portions of
graph G. To accomplish this we introduce a heuristic which
intelligently guides the search toward GE when it looks like
following parts of old paths will help the search get close to
the goal. We define a new heuristic hE in terms of the given
heuristic hG and edges in GE .

hE(s0) = min
π

N−1∑

i=0

min{εEhG(si, si+1), c
E(si, si+1)} (1)

where π is a path 〈s0 . . . sN−1〉 and sN−1 = sgoal and εE is
a scalar ≥ 1.
Equation 1 is a minimization over a sequence of segments

such that each segment is a pair of arbitrary states sa, sb ∈ G
and the cost of this segment is given by the minimum of two
things: either εEhG(sa, sb), the original heuristic inflated by
εE , or the cost of an actual least-cost path in GE , provided
that sa, sb ∈ GE .
In Figure 2, the path π that minimizes the heuristic contains

a sequence of alternating segments. In reality π can alternate
between hG and GE segments as many or as few times as
needed to produce the minimal π. When there is a GE segment
we can have many states si on the segment to connect two

Fig. 2. A visualization of Equation 1. Solid lines are composed of edges
from GE , while dashed lines are distances according to hG. Note that hG

segments are always only two points long, while GE segments can be an
arbitrary number of points.

(a) εE = 1 (b) εE = 2

(c) εE → ∞

Fig. 3. Shortest π according to hE as εE changes. The dark solid lines are
paths in GE while the dark dashed lines are the heuristic’s path π. Note as
εE increases, the heuristic prefers to travel on GE . The light gray circles and
lines show the graph G and the filled in gray circles represent the expanded
states under the guidance of the heuristic.

states, while when on a hG segment a single pair of points
suffices since no real edge between two states is needed for
hG to be defined.
The larger εE is, the more we avoid exploring G and focus

on traveling on paths in GE . Figure 3 demonstrates how this
works. As GE increases, it becomes more expensive to travel
off of GE causing the heuristic to guide the search along parts
ofGE . In Figure 3a, the heuristic ignores the graphGE because
without inflating hG at all, following real edges costs (like
those in GE ) will never be the cheaper option. In the other
parts of Figure 3 we can see as εE increase, the heuristic uses
more and more of GE . This figure also shows how during the
search, by following old paths, we can avoid obstacles and
have far fewer expansions. The expanded states are shown as
filled in gray circles, which change based on how the hE is
biased by εE .
The computePath function runs weighted A* without re-

expansions [13, 10]. Weighted A* uses a parameter εw >
1 to inflate the heuristic used by A*. The solution cost is
guaranteed to be no worse than εw times the cost of the optimal
solution and in practice it runs dramatically faster than A*.
The main modification to Weighted A*, is that in addition to
using the edges that G already provides (getSuccessors), we
add two additional types of successors: shortcuts and snap
motions. The only other change is that instead of using the

goal	  

start	  

Travelling	  on	  E-‐Graph	  	  
uses	  actual	  costs	  

Travelling	  off	  the	  E-‐Graph	  uses	  	  
an	  inflated	  original	  heurisHc	  

HeurisHc	  computaHon	  finds	  	  
a	  min	  cost	  path	  using	  	  
two	  kinds	  of	  “edges”	  

hG	  

cε	  

HeurisHc	  

14	  



εε=1.5	  εε=∞	  

goal	  
start	  

goal	  
start	  

HeurisHc	  

15	  

“E-‐Graphs:	  Bootstrapping	  Planning	  with	  Experience	  Graphs”	  
Mike	  Phillips,	  Benjamin	  Cohen,	  Sachin	  ChiFa,	  Maxim	  Likhachev	  
RSS	  2012	  



εε=1.5	  εε=∞	  

goal	  
start	  

goal	  
start	  

HeurisHc	  

16	  

This	  parameter	  also	  acts	  as	  the	  
sub-‐op8mality	  bound.	  	  

“E-‐Graphs:	  Bootstrapping	  Planning	  with	  Experience	  Graphs”	  
Mike	  Phillips,	  Benjamin	  Cohen,	  Sachin	  ChiFa,	  Maxim	  Likhachev	  
RSS	  2012	  



Experiments	  on	  Real	  and	  Simulated	  PR2	  

•  High-‐Dimensional	  problems	  
–  7	  DoF	  single	  arm	  
–  10	  DoF	  full-‐body	  

•  Comparison	  against	  
–  Weighted	  A*	  
–  RRT-‐Connect	  
–  PRM	  
–  RRT*	  

•  Results	  
–  Timing	  is	  as	  fast	  as	  sampling	  

methods	  
–  Much	  more	  consistent	  plans	  
–  Be?er	  quality	  in	  complex	  

scenarios	  where	  shortculng	  
is	  less	  helpful	  



Experiments	  on	  Real	  and	  Simulated	  PR2	  

•  High-‐Dimensional	  problems	  
–  7	  DoF	  single	  arm	  
–  10	  DoF	  full-‐body	  

•  Comparison	  against	  
–  Weighted	  A*	  
–  RRT-‐Connect	  
–  PRM	  
–  RRT*	  

•  Results	  
–  Timing	  is	  as	  fast	  as	  sampling	  

methods	  
–  Be?er	  quality	  in	  complex	  

scenarios	  where	  shortculng	  
is	  less	  helpful	  

–  Much	  more	  consistent	  plans	  



AnyHme	  Planning	  

19	  

start	   goal	  

consistent heuristic is one that satisfies the triangle inequality,
hG(s, sgoal) ≤ c(s, s′) + hG(s′, sgoal).

C. Algorithm Detail
The planner maintains two graphs, G and GE . At the high-

level, every time the planner receives a new planning request
the findPath function is called. It first updates GE to account
for edge cost changes and perform some precomputations.
Then it calls the computePath function, which produces a
path π. This path is then added to GE . The updateEGraph
function works by updating any edge costs in GE that have
changed. If any edges are invalid (e.g. they are now blocked
by obstacles) they are put into a disabled list. Conversely, if
an edge in the disabled list now has finite cost it is re-enabled.
At this point, the graph GE should only contain finite edges.
A precomputeShortcuts function is then called which can be
used to compute shortcut edges before the search begins. Ways
to compute shortcuts are discussed in Section V. Finally, our
heuristic hE , which encourages path reuse, is computed.

findPath(sstart, sgoal)
1: updateEGraph(sgoal)
2: π = computePath(sstart, sgoal)

3: GE = GE ∪ π

updateEGraph(sgoal)
1: updateChangedCosts()
2: disable edges that are now invalid
3: re-enable disabled edges that are now valid
4: precomputeShortcuts()

5: compute heuristic hE according to Equation 1

Our algorithm’s speed-up comes from being able to reuse
parts of old paths and avoid searching large portions of
graph G. To accomplish this we introduce a heuristic which
intelligently guides the search toward GE when it looks like
following parts of old paths will help the search get close to
the goal. We define a new heuristic hE in terms of the given
heuristic hG and edges in GE .

hE(s0) = min
π

N−1∑

i=0

min{εEhG(si, si+1), c
E(si, si+1)} (1)

where π is a path 〈s0 . . . sN−1〉 and sN−1 = sgoal and εE is
a scalar ≥ 1.
Equation 1 is a minimization over a sequence of segments

such that each segment is a pair of arbitrary states sa, sb ∈ G
and the cost of this segment is given by the minimum of two
things: either εEhG(sa, sb), the original heuristic inflated by
εE , or the cost of an actual least-cost path in GE , provided
that sa, sb ∈ GE .
In Figure 2, the path π that minimizes the heuristic contains

a sequence of alternating segments. In reality π can alternate
between hG and GE segments as many or as few times as
needed to produce the minimal π. When there is a GE segment
we can have many states si on the segment to connect two

Fig. 2. A visualization of Equation 1. Solid lines are composed of edges
from GE , while dashed lines are distances according to hG. Note that hG

segments are always only two points long, while GE segments can be an
arbitrary number of points.

(a) εE = 1 (b) εE = 2

(c) εE → ∞

Fig. 3. Shortest π according to hE as εE changes. The dark solid lines are
paths in GE while the dark dashed lines are the heuristic’s path π. Note as
εE increases, the heuristic prefers to travel on GE . The light gray circles and
lines show the graph G and the filled in gray circles represent the expanded
states under the guidance of the heuristic.

states, while when on a hG segment a single pair of points
suffices since no real edge between two states is needed for
hG to be defined.
The larger εE is, the more we avoid exploring G and focus

on traveling on paths in GE . Figure 3 demonstrates how this
works. As GE increases, it becomes more expensive to travel
off of GE causing the heuristic to guide the search along parts
ofGE . In Figure 3a, the heuristic ignores the graphGE because
without inflating hG at all, following real edges costs (like
those in GE ) will never be the cheaper option. In the other
parts of Figure 3 we can see as εE increase, the heuristic uses
more and more of GE . This figure also shows how during the
search, by following old paths, we can avoid obstacles and
have far fewer expansions. The expanded states are shown as
filled in gray circles, which change based on how the hE is
biased by εE .
The computePath function runs weighted A* without re-

expansions [13, 10]. Weighted A* uses a parameter εw >
1 to inflate the heuristic used by A*. The solution cost is
guaranteed to be no worse than εw times the cost of the optimal
solution and in practice it runs dramatically faster than A*.
The main modification to Weighted A*, is that in addition to
using the edges that G already provides (getSuccessors), we
add two additional types of successors: shortcuts and snap
motions. The only other change is that instead of using the

As	  	  	  	  	  	  	  	  decreases	  we’d	  like	  to	  see	  a	  less	  dependence	  on	  prior	  experience	  



Incremental	  Planning	  

Goal	   Goal	  

Goal	   Goal	  





Conclusion	  
•  Experience	  Graphs	  use	  previous	  plans	  to	  
accelerate	  future	  planning	  

•  Unlike	  previous	  approaches,	  E-‐Graphs	  allow	  
for	  “so^”	  reuse	  of	  parts	  of	  experiences	  	  

•  TheoreHcal	  bounds	  soluHon	  cost	  
•  Experiments	  show	  planning	  Hmes	  on	  par	  with	  
sampling	  methods	  but	  beFer	  quality	  and	  
more	  consistent	  paths	  

•  Can	  be	  used	  as	  an	  anyHme	  planner	  
•  A	  natural	  approach	  to	  incremental	  planning	  


