
Planning	
  with	
  Experience	
  Graphs	
  

Mike	
  Phillips	
  
Carnegie	
  Mellon	
  University	
  

	
  
Collaborators	
  

Benjamin	
  Cohen,	
  Andrew	
  Dornbush,	
  Victor	
  Hwang,	
  	
  
Sachin	
  ChiFa,	
  Maxim	
  Likhachev	
  

	
  



MoHvaHon	
  
Many	
  tasks	
  are	
  repeHHve.	
  They	
  may	
  have	
  
different	
  starts	
  and	
  goals,	
  but	
  have	
  the	
  
same	
  general	
  moHon.	
  
	
  
Examples:	
  

–  loading	
  a	
  dishwasher	
  
–  opening	
  doors	
  
–  moving	
  objects	
  around	
  a	
  warehouse	
  

•  Robots	
  should	
  be	
  able	
  to	
  re-­‐use	
  prior	
  
experience	
  to	
  accelerate	
  planning	
  

•  Especially	
  useful	
  for	
  high-­‐dimensional	
  
planning	
  problems	
  such	
  as	
  mobile	
  
manipula9on	
  

2	
  



Background	
  
•  Find	
  a	
  collision	
  free,	
  good	
  quality,	
  path	
  from	
  the	
  start	
  state	
  to	
  
the	
  goal	
  state	
  

Obstacles	
  

goal	
  
start	
  

3	
  



Background	
  

Graph	
  represenHng	
  free	
  space	
  

goal	
  
start	
  

4	
  



Background	
  

goal	
  
start	
  

Expanded	
  (computed)	
  states	
  

SoluHon	
  Path	
  (colored	
  border)	
   5	
  



Background	
  

goal	
  

start	
  

•  A	
  similar	
  scenario	
  
•  This	
  repeats	
  a	
  lot	
  of	
  computaHon!	
  

6	
  



Experience	
  Graphs	
  (E-­‐Graphs)	
  
•  CollecHon	
  of	
  previously	
  computed	
  paths	
  or	
  demonstraHons	
  
•  A	
  significantly	
  smaller	
  sub-­‐graph	
  of	
  the	
  original	
  graph	
  
	
  

7	
  



Experience	
  Graphs	
  (E-­‐Graphs)	
  

goal	
  

start	
  

•  For	
  repeHHve	
  tasks,	
  planning	
  with	
  E-­‐Graphs	
  is	
  much	
  faster	
  
	
  

8	
  



Experience	
  Graphs	
  (E-­‐Graphs)	
  

goal	
  

start	
  

•  For	
  repeHHve	
  tasks,	
  planning	
  with	
  E-­‐Graphs	
  is	
  much	
  faster	
  
	
  

Theorem	
  1:	
  Algorithm	
  is	
  complete	
  with	
  
respect	
  to	
  the	
  original	
  graph	
  
	
  
Theorem	
  2:	
  The	
  cost	
  of	
  the	
  solu8on	
  is	
  within	
  a	
  
given	
  bound	
  on	
  sub-­‐op8mality	
  

9	
  



Experience	
  Graphs	
  (E-­‐Graphs)	
  
•  E-­‐Graph	
  a^er	
  three	
  runs…	
  

10	
  



Experience	
  Graphs	
  (E-­‐Graphs)	
  
•  E-­‐Graph	
  a^er	
  three	
  runs…	
  

11	
  



goal	
  

start	
  

Experience	
  Graphs	
  (E-­‐Graphs)	
  
•  Using	
  E-­‐graph	
  

–  Very	
  few	
  states	
  expanded	
  
–  Completeness	
  &	
  bounds	
  on	
  sub-­‐op9mality	
  w.r.t.	
  original	
  graph	
  

12	
  



goal	
  

start	
  

Experience	
  Graphs	
  (E-­‐Graphs)	
  

13	
  

•  Reuse	
  E-­‐Graph	
  by:	
  
–  Introducing	
  a	
  new	
  heurisHc	
  funcHon	
  	
  
–  HeurisHc	
  guides	
  the	
  search	
  toward	
  expanding	
  states	
  on	
  the	
  E-­‐Graph	
  



consistent heuristic is one that satisfies the triangle inequality,
hG(s, sgoal) ≤ c(s, s′) + hG(s′, sgoal).

C. Algorithm Detail
The planner maintains two graphs, G and GE . At the high-

level, every time the planner receives a new planning request
the findPath function is called. It first updates GE to account
for edge cost changes and perform some precomputations.
Then it calls the computePath function, which produces a
path π. This path is then added to GE . The updateEGraph
function works by updating any edge costs in GE that have
changed. If any edges are invalid (e.g. they are now blocked
by obstacles) they are put into a disabled list. Conversely, if
an edge in the disabled list now has finite cost it is re-enabled.
At this point, the graph GE should only contain finite edges.
A precomputeShortcuts function is then called which can be
used to compute shortcut edges before the search begins. Ways
to compute shortcuts are discussed in Section V. Finally, our
heuristic hE , which encourages path reuse, is computed.

findPath(sstart, sgoal)
1: updateEGraph(sgoal)
2: π = computePath(sstart, sgoal)

3: GE = GE ∪ π

updateEGraph(sgoal)
1: updateChangedCosts()
2: disable edges that are now invalid
3: re-enable disabled edges that are now valid
4: precomputeShortcuts()

5: compute heuristic hE according to Equation 1

Our algorithm’s speed-up comes from being able to reuse
parts of old paths and avoid searching large portions of
graph G. To accomplish this we introduce a heuristic which
intelligently guides the search toward GE when it looks like
following parts of old paths will help the search get close to
the goal. We define a new heuristic hE in terms of the given
heuristic hG and edges in GE .

hE(s0) = min
π

N−1∑

i=0

min{εEhG(si, si+1), c
E(si, si+1)} (1)

where π is a path 〈s0 . . . sN−1〉 and sN−1 = sgoal and εE is
a scalar ≥ 1.
Equation 1 is a minimization over a sequence of segments

such that each segment is a pair of arbitrary states sa, sb ∈ G
and the cost of this segment is given by the minimum of two
things: either εEhG(sa, sb), the original heuristic inflated by
εE , or the cost of an actual least-cost path in GE , provided
that sa, sb ∈ GE .
In Figure 2, the path π that minimizes the heuristic contains

a sequence of alternating segments. In reality π can alternate
between hG and GE segments as many or as few times as
needed to produce the minimal π. When there is a GE segment
we can have many states si on the segment to connect two

Fig. 2. A visualization of Equation 1. Solid lines are composed of edges
from GE , while dashed lines are distances according to hG. Note that hG

segments are always only two points long, while GE segments can be an
arbitrary number of points.

(a) εE = 1 (b) εE = 2

(c) εE → ∞

Fig. 3. Shortest π according to hE as εE changes. The dark solid lines are
paths in GE while the dark dashed lines are the heuristic’s path π. Note as
εE increases, the heuristic prefers to travel on GE . The light gray circles and
lines show the graph G and the filled in gray circles represent the expanded
states under the guidance of the heuristic.

states, while when on a hG segment a single pair of points
suffices since no real edge between two states is needed for
hG to be defined.
The larger εE is, the more we avoid exploring G and focus

on traveling on paths in GE . Figure 3 demonstrates how this
works. As GE increases, it becomes more expensive to travel
off of GE causing the heuristic to guide the search along parts
ofGE . In Figure 3a, the heuristic ignores the graphGE because
without inflating hG at all, following real edges costs (like
those in GE ) will never be the cheaper option. In the other
parts of Figure 3 we can see as εE increase, the heuristic uses
more and more of GE . This figure also shows how during the
search, by following old paths, we can avoid obstacles and
have far fewer expansions. The expanded states are shown as
filled in gray circles, which change based on how the hE is
biased by εE .
The computePath function runs weighted A* without re-

expansions [13, 10]. Weighted A* uses a parameter εw >
1 to inflate the heuristic used by A*. The solution cost is
guaranteed to be no worse than εw times the cost of the optimal
solution and in practice it runs dramatically faster than A*.
The main modification to Weighted A*, is that in addition to
using the edges that G already provides (getSuccessors), we
add two additional types of successors: shortcuts and snap
motions. The only other change is that instead of using the

goal	
  

start	
  

Travelling	
  on	
  E-­‐Graph	
  	
  
uses	
  actual	
  costs	
  

Travelling	
  off	
  the	
  E-­‐Graph	
  uses	
  	
  
an	
  inflated	
  original	
  heurisHc	
  

HeurisHc	
  computaHon	
  finds	
  	
  
a	
  min	
  cost	
  path	
  using	
  	
  
two	
  kinds	
  of	
  “edges”	
  

hG	
  

cε	
  

HeurisHc	
  

14	
  



εε=1.5	
  εε=∞	
  

goal	
  
start	
  

goal	
  
start	
  

HeurisHc	
  

15	
  

“E-­‐Graphs:	
  Bootstrapping	
  Planning	
  with	
  Experience	
  Graphs”	
  
Mike	
  Phillips,	
  Benjamin	
  Cohen,	
  Sachin	
  ChiFa,	
  Maxim	
  Likhachev	
  
RSS	
  2012	
  



εε=1.5	
  εε=∞	
  

goal	
  
start	
  

goal	
  
start	
  

HeurisHc	
  

16	
  

This	
  parameter	
  also	
  acts	
  as	
  the	
  
sub-­‐op8mality	
  bound.	
  	
  

“E-­‐Graphs:	
  Bootstrapping	
  Planning	
  with	
  Experience	
  Graphs”	
  
Mike	
  Phillips,	
  Benjamin	
  Cohen,	
  Sachin	
  ChiFa,	
  Maxim	
  Likhachev	
  
RSS	
  2012	
  



Experiments	
  on	
  Real	
  and	
  Simulated	
  PR2	
  

•  High-­‐Dimensional	
  problems	
  
–  7	
  DoF	
  single	
  arm	
  
–  10	
  DoF	
  full-­‐body	
  

•  Comparison	
  against	
  
–  Weighted	
  A*	
  
–  RRT-­‐Connect	
  
–  PRM	
  
–  RRT*	
  

•  Results	
  
–  Timing	
  is	
  as	
  fast	
  as	
  sampling	
  

methods	
  
–  Much	
  more	
  consistent	
  plans	
  
–  Be?er	
  quality	
  in	
  complex	
  

scenarios	
  where	
  shortculng	
  
is	
  less	
  helpful	
  



Experiments	
  on	
  Real	
  and	
  Simulated	
  PR2	
  

•  High-­‐Dimensional	
  problems	
  
–  7	
  DoF	
  single	
  arm	
  
–  10	
  DoF	
  full-­‐body	
  

•  Comparison	
  against	
  
–  Weighted	
  A*	
  
–  RRT-­‐Connect	
  
–  PRM	
  
–  RRT*	
  

•  Results	
  
–  Timing	
  is	
  as	
  fast	
  as	
  sampling	
  

methods	
  
–  Be?er	
  quality	
  in	
  complex	
  

scenarios	
  where	
  shortculng	
  
is	
  less	
  helpful	
  

–  Much	
  more	
  consistent	
  plans	
  



AnyHme	
  Planning	
  

19	
  

start	
   goal	
  

consistent heuristic is one that satisfies the triangle inequality,
hG(s, sgoal) ≤ c(s, s′) + hG(s′, sgoal).

C. Algorithm Detail
The planner maintains two graphs, G and GE . At the high-

level, every time the planner receives a new planning request
the findPath function is called. It first updates GE to account
for edge cost changes and perform some precomputations.
Then it calls the computePath function, which produces a
path π. This path is then added to GE . The updateEGraph
function works by updating any edge costs in GE that have
changed. If any edges are invalid (e.g. they are now blocked
by obstacles) they are put into a disabled list. Conversely, if
an edge in the disabled list now has finite cost it is re-enabled.
At this point, the graph GE should only contain finite edges.
A precomputeShortcuts function is then called which can be
used to compute shortcut edges before the search begins. Ways
to compute shortcuts are discussed in Section V. Finally, our
heuristic hE , which encourages path reuse, is computed.

findPath(sstart, sgoal)
1: updateEGraph(sgoal)
2: π = computePath(sstart, sgoal)

3: GE = GE ∪ π

updateEGraph(sgoal)
1: updateChangedCosts()
2: disable edges that are now invalid
3: re-enable disabled edges that are now valid
4: precomputeShortcuts()

5: compute heuristic hE according to Equation 1

Our algorithm’s speed-up comes from being able to reuse
parts of old paths and avoid searching large portions of
graph G. To accomplish this we introduce a heuristic which
intelligently guides the search toward GE when it looks like
following parts of old paths will help the search get close to
the goal. We define a new heuristic hE in terms of the given
heuristic hG and edges in GE .

hE(s0) = min
π

N−1∑

i=0

min{εEhG(si, si+1), c
E(si, si+1)} (1)

where π is a path 〈s0 . . . sN−1〉 and sN−1 = sgoal and εE is
a scalar ≥ 1.
Equation 1 is a minimization over a sequence of segments

such that each segment is a pair of arbitrary states sa, sb ∈ G
and the cost of this segment is given by the minimum of two
things: either εEhG(sa, sb), the original heuristic inflated by
εE , or the cost of an actual least-cost path in GE , provided
that sa, sb ∈ GE .
In Figure 2, the path π that minimizes the heuristic contains

a sequence of alternating segments. In reality π can alternate
between hG and GE segments as many or as few times as
needed to produce the minimal π. When there is a GE segment
we can have many states si on the segment to connect two

Fig. 2. A visualization of Equation 1. Solid lines are composed of edges
from GE , while dashed lines are distances according to hG. Note that hG

segments are always only two points long, while GE segments can be an
arbitrary number of points.

(a) εE = 1 (b) εE = 2

(c) εE → ∞

Fig. 3. Shortest π according to hE as εE changes. The dark solid lines are
paths in GE while the dark dashed lines are the heuristic’s path π. Note as
εE increases, the heuristic prefers to travel on GE . The light gray circles and
lines show the graph G and the filled in gray circles represent the expanded
states under the guidance of the heuristic.

states, while when on a hG segment a single pair of points
suffices since no real edge between two states is needed for
hG to be defined.
The larger εE is, the more we avoid exploring G and focus

on traveling on paths in GE . Figure 3 demonstrates how this
works. As GE increases, it becomes more expensive to travel
off of GE causing the heuristic to guide the search along parts
ofGE . In Figure 3a, the heuristic ignores the graphGE because
without inflating hG at all, following real edges costs (like
those in GE ) will never be the cheaper option. In the other
parts of Figure 3 we can see as εE increase, the heuristic uses
more and more of GE . This figure also shows how during the
search, by following old paths, we can avoid obstacles and
have far fewer expansions. The expanded states are shown as
filled in gray circles, which change based on how the hE is
biased by εE .
The computePath function runs weighted A* without re-

expansions [13, 10]. Weighted A* uses a parameter εw >
1 to inflate the heuristic used by A*. The solution cost is
guaranteed to be no worse than εw times the cost of the optimal
solution and in practice it runs dramatically faster than A*.
The main modification to Weighted A*, is that in addition to
using the edges that G already provides (getSuccessors), we
add two additional types of successors: shortcuts and snap
motions. The only other change is that instead of using the

As	
  	
  	
  	
  	
  	
  	
  	
  decreases	
  we’d	
  like	
  to	
  see	
  a	
  less	
  dependence	
  on	
  prior	
  experience	
  



Incremental	
  Planning	
  

Goal	
   Goal	
  

Goal	
   Goal	
  





Conclusion	
  
•  Experience	
  Graphs	
  use	
  previous	
  plans	
  to	
  
accelerate	
  future	
  planning	
  

•  Unlike	
  previous	
  approaches,	
  E-­‐Graphs	
  allow	
  
for	
  “so^”	
  reuse	
  of	
  parts	
  of	
  experiences	
  	
  

•  TheoreHcal	
  bounds	
  soluHon	
  cost	
  
•  Experiments	
  show	
  planning	
  Hmes	
  on	
  par	
  with	
  
sampling	
  methods	
  but	
  beFer	
  quality	
  and	
  
more	
  consistent	
  paths	
  

•  Can	
  be	
  used	
  as	
  an	
  anyHme	
  planner	
  
•  A	
  natural	
  approach	
  to	
  incremental	
  planning	
  


