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Search-based Planning Library (SBPL) %

A library for planning with heuristic search (e.g., A* search and 1ts
variants)

Standalone library and integrated into ROS

Compiles under linux and windows

http://www.sbpl.net/software or http://www.ros.org/wiki/sbpl
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Planning with Heuristic Search m&

* generate a systematic graph representation of the planning problem
* search the graph for a solution with a heuristic search

* typically the construction of the graph is interleaved with the
search (1.e., only create the states/edges that search explores)

2D grid-based graph representation for 2D (x,)) search-based planning:
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Planning with Heuristic Search m&

* Typical components of a Search-based Planner

Graph construction (given a state what are its successor states)

Cost function (a cost associated with every transition in the graph)

Heuristic function (estimates of cost-to-goal)

Graph search algorithm (for example, A* search)
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Planning with Heuristic Search
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Search-based Planning Library (SBPL) %

 Usage of SBPL.:
- build a planner using existing components to run on a robot
- plugin and test your own graph search
- develop and plugin an environment for your specific planning
problem “representable” as a graph search problem
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Search-based Planning Library (SBPL) Wd

. Currently implemented graph searches within SBPL:
- ARA* - anytime version of A*
- ANA* - anytime non-parametric version of A*
- Anytime D* - anytime incremental version of A*
- R* - arandomized version of A* (hybrid between deterministic searches and sampling-
based planning)

. Currently implemented environments (planning problems) within SBPL:
- 2D (x,y) grid-based planning problem
- 3D (x,y,0) lattice-based planning problem
- 3D (x,y,0) lattice-based planning problem with full-body collision checking
- N-DOF planar robot arm planning problem

. ROS packages that use SBPL:
- SBPL lattice planner for (x,y,0) planning for navigation
- SBPL lattice planner for (x,y,0) planning for navigation with full-body collision checking
- SBPL cart planner for PR2 navigating with a cart
- SBPL motion planner for PR2 single- and dual-arm motions
- default move base invokes SBPL lattice planner as part of escape behavior
- SBPL door planning module for PR2 opening and moving through doors
- SBPL footstep planner for humanoids (by Armin Hornung at Univ. of Freiburg)
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Search-based Planning Library (SBPL) %

. Main.cpp shows simple examples for how to use SBPL:

EnvironmentNAVXYTHETALAT environment navxythetalat;
if(lenvironment navxythetalat.InitializeEnv(argv[1], perimeterptsV, NULL))

{
SBPL_ERROR("ERROR: InitializeEnv failed\n"),
throw new SBPL_Exception(),

/

if(lenvironment navxythetalat.InitializeMDPCfg(&MDPCfg))

{
SBPL_ERROR("ERROR: InitializeMDPCfg failed\n");
throw new SBPL_Exception();

/

//plan a path

vector<int> solution_stateIDs V;

bool bforwardsearch = false;

ADPlanner planner(&environment_navxythetalat, bforwardsearch);
if(planner.set_start(MDPCfg.startstateid) == ())

{
SBPL _ERROR("ERROR: failed to set start state\n");
throw new SBPL_Exception();

/

if(planner.set_goal(MDPCfg.goalstateid) == ()

{

SBPL _ERROR("ERROR: failed to set goal state\n");
throw new SBPL_Exception();

/

planner.set initialsolution eps(3.0);

bRet = planner.replan(allocated time secs, &solution_statelDs V);
SBPL_PRINTF("size of solution=%d\n", (unsigned int)solution_stateIDs V.size());
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3D (x,y,0) Planning for Navigation %

Maxim Likhachev Carnegie Mellon 15



3D (x,y,0) Planning for Navigation m&

*  Environment:
- graph constructed using motion primitives [Pivtoraiko & Kelly, IROS‘05]

outcome state is the center of the corresponding cell in the underlying (x,y,0,...) cell

each transition is feasible
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(constructed beforehand) ﬁ% %
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(action template)

replicate it~ ©(S1,5¢) =9

@ online -

by translating it

% > S,
100

Maxim Likhachev Carnegie Mellon 16



3D (x,y,0) Planning for Navigation m&

*  Environment:
- graph constructed using motion primitives [Pivtoraiko & Kelly, IROS‘05]
- takes set of motion primitives as input (.mprim files generated within
matlab/mprim directory using corresponding matlab scripts):

unicycle model or unicycle with sideways motions  or ...

__________________________________

__________________________________

_____________________________________
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3D (x,y,0) Planning for Navigation WJ

* Environment:
- graph constructed using motion primitives [Pivtoraiko & Kelly, ‘05]
- takes set of motion primitives as input (.mprim files generated within
matlab/mprim directory using corresponding matlab scripts)
- takes the footprint of the robot defined as a polygon as input
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3D (x,y,0) Planning for Navigation %

*  @Graph search:
- typically ARA* (anytime version of A*) or Anytime D* (anytime
incremental version of A*)
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3D (x,y,0) Planning for Navigation WJ

* Planning with full-body collision checking (3d_navigation node
in ROS)

Hornung et al., ICRA 12
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Single- and Dual-arm Motion Planning %

e  Environment:

- graph constructed using static & adaptive motion
primitives for the arm(s) [Cohen et al., ICRA11]

- heuristic for any state is 3D distance for end-effector
accounting for obstacles (computed as 3D BFS) [Cohen
et al., I[CRA11]
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Single- and Dual-arm Motion Planning %

*  @Graph search:
- typically ARA* (anytime version of A* search)
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Single- and Dual-arm Motion Planning m&
* Planning for PR2 and KUKA arms

Carrying a tray with a wine

glass filled with Cheerios
through a tight space

[Cohen et al., ICRA’12] Rdvanced Robotic Laser Coating Removal System work led by
. Cohen & Cowley;

Ccrc ..
f joint work
i with CJ Taylor

T

NATIONAL ROBOTICS

NGINEERING CENTER

joint work Stentz, Herman, Galati, Kelly, Meyhofer, etc. at NREC/CMU
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Motion Planning with Heuristic Search Wd

* Pros
- typically good cost minimization
- consistent motions
- handle discrete transitions naturally

* Cons
- can be slow if heuristic function has deep local minima
- designing a “good” but fast-to-compute heuristic function is important
- designing and coding up a compact graph representation can be non-trivial
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sbpd

http://www.sbpl.net/software or http://www.ros.org/wiki/sbpl

Thanks to Willow Garage for their support of SBPL!

Collaborators on SBPL: S. Chitta, B. Cohen, M. Phillips
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