Search-based Planning Library
SBPL

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

Carnegie Mellon
THE ROBOTICS INSTITUTE Q5%4

Outline %

e QOverview

 Few SBPL-based planners in details

- 3D (x,y,0) lattice-based planning for navigation
(available as ROS node or standalone within SBPL)

- single and dual 7DOF arm motion planning using manipulation lattice
(available as ROS node)

e Pros/Cons

Maxim Likhachev Carnegie Mellon

Outline %

e QOverview

 Few SBPL-based planners in details

- 3D (x,y,0) lattice-based planning for navigation
(available as ROS node or standalone within SBPL)

- single and dual 7DOF arm motion planning using manipulation lattice
(available as ROS node)

e Pros/Cons

Maxim Likhachev Carnegie Mellon

Search-based Planning Library (SBPL) %

A library for planning with heuristic search (e.g., A* search and 1ts
variants)

Standalone library and integrated into ROS

Compiles under linux and windows

http://www.sbpl.net/software or http://www.ros.org/wiki/sbpl

Maxim Likhachev Carnegie Mellon 4

http://www.sbpl.net/software
http://www.sbpl.net/software
http://www.sbpl.net/software
http://www.ros.org/wiki/sbpl
http://www.sbpl.net/software

Planning with Heuristic Search m&

* generate a systematic graph representation of the planning problem
* search the graph for a solution with a heuristic search

* typically the construction of the graph is interleaved with the
search (1.e., only create the states/edges that search explores)

2D grid-based graph representation for 2D (x,)) search-based planning:

Sy |8, | 8; | construct @ - search the graph
the graph: “‘ for solution:
IR e

S, | Ss

Ss @

discretize:

lattice-based graph representation for 3D (x,y,0) planning:

% ssssss
517‘\%\
7 9 P
v # construct @ 4 search the graph
: for solution: (E=
S, Sy It
C(s,5) =5 C(s,s7) = s |
C(5,,5) =5 ss C(s489) s
S, &

the graph
CHE CHE _— > _—
0 :{T
N ===
motion primitives u? .

Maxim Likhachev Carnegie Mellon 5

Planning with Heuristic Search m&

* Typical components of a Search-based Planner

Graph construction (given a state what are its successor states)

Cost function (a cost associated with every transition in the graph)

Heuristic function (estimates of cost-to-goal)

Graph search algorithm (for example, A* search)

Maxim Likhachev Carnegie Mellon 6

&

Planning with Heuristic Search

Typical components of a Search-based Planner

T T
Graph construction (given a state what are its successor states)

Cost function (a cost associated with every transition in the graph)——-

Heuristic function (estimates of cost-to-goal)

juspuadap uipuiop

Graph search algorithm (for example, A* search)

T

domain independent

Maxim Likhachev Carnegie Mellon 7

Typical components of a Search-based Planner

Planning with Heuristic Search

Graph construction (given a state what are its successor states)
Cost function (a cost associated with every transition in the graph)
Heuristic function (estimates of cost-to-goal)

Graph search algorithm (for example, A* search)

T

T

juspuadap uipuiop

&

domain independent

Environment defining
the planning problem
as a graph

SBPL Library

Domain-independent
graph search

Maxim Likhachev

Carnegie Mellon

Graph constructio

i |\

given a state what are its successor states)

Heuristic function (estimates of cost-to-goal)

Graph search algorithm (for example, A* search)

Cost function (a cost associated with every transition in the graph)——

T

domain independent

Environment defining
the planning problem
as a graph

SBPL Library

?l Domain-independent
graph search

Maxim Likhachev

Carnegie Mellon

juapuadop uivu

=g

Implements. sty Implements. |

\ Successors/Predecessors of a state; Graph search
Transition cost; State heuristic (e.g, A* D* ARA*, etc.)

state what are its successor staies)

Jjuapu2dop uivu

every transition in the graph)

< O cnct_tn_anal)

- Graph search %;’

™~

\ | domain independent
SBPL %ibmry
Environment defining D in-ind dent
the planning problem v omain-independen

graph search

as a graph

Maxim Likhachev Carnegie Mellon 10

Search-based Planning Library (SBPL) %

 Usage of SBPL.:
- build a planner using existing components to run on a robot
- plugin and test your own graph search
- develop and plugin an environment for your specific planning
problem “representable” as a graph search problem

Maxim Likhachev Carnegie Mellon 11

Search-based Planning Library (SBPL) Wd

. Currently implemented graph searches within SBPL:
- ARA* - anytime version of A*
- ANA* - anytime non-parametric version of A*
- Anytime D* - anytime incremental version of A*
- R* - arandomized version of A* (hybrid between deterministic searches and sampling-
based planning)

. Currently implemented environments (planning problems) within SBPL:
- 2D (x,y) grid-based planning problem
- 3D (x,y,0) lattice-based planning problem
- 3D (x,y,0) lattice-based planning problem with full-body collision checking
- N-DOF planar robot arm planning problem

. ROS packages that use SBPL:
- SBPL lattice planner for (x,y,0) planning for navigation
- SBPL lattice planner for (x,y,0) planning for navigation with full-body collision checking
- SBPL cart planner for PR2 navigating with a cart
- SBPL motion planner for PR2 single- and dual-arm motions
- default move base invokes SBPL lattice planner as part of escape behavior
- SBPL door planning module for PR2 opening and moving through doors
- SBPL footstep planner for humanoids (by Armin Hornung at Univ. of Freiburg)

Maxim Likhachev Carnegie Mellon 12

Search-based Planning Library (SBPL) %

. Main.cpp shows simple examples for how to use SBPL:

EnvironmentNAVXYTHETALAT environment navxythetalat;
if(lenvironment navxythetalat.InitializeEnv(argv[1], perimeterptsV, NULL))

{
SBPL_ERROR("ERROR: InitializeEnv failed\n"),
throw new SBPL_Exception(),

/

if(lenvironment navxythetalat.InitializeMDPCfg(&MDPCfg))

{
SBPL_ERROR("ERROR: InitializeMDPCfg failed\n");
throw new SBPL_Exception();

/

//plan a path

vector<int> solution_stateIDs V;

bool bforwardsearch = false;

ADPlanner planner(&environment_navxythetalat, bforwardsearch);
if(planner.set_start(MDPCfg.startstateid) == ())

{
SBPL _ERROR("ERROR: failed to set start state\n");
throw new SBPL_Exception();

/

if(planner.set_goal(MDPCfg.goalstateid) == ()

{

SBPL _ERROR("ERROR: failed to set goal state\n");
throw new SBPL_Exception();

/

planner.set initialsolution eps(3.0);

bRet = planner.replan(allocated time secs, &solution_statelDs V);
SBPL_PRINTF("size of solution=%d\n", (unsigned int)solution_stateIDs V.size());

Maxim Likhachev Carnegie Mellon 13

Outline %

Overview

Few SBPL-based planners in details

- 3D (x,),0) lattice-based planning for navigation
(available as ROS node or standalone within SBPL)

- single and dual 7DOF arm motion planning using manipulation lattice
(available as ROS node)

Pros/Cons

Maxim Likhachev Carnegie Mellon

14

3D (x,y,0) Planning for Navigation %

Maxim Likhachev Carnegie Mellon 15

3D (x,y,0) Planning for Navigation m&

* Environment:
- graph constructed using motion primitives [Pivtoraiko & Kelly, IROS‘05]

outcome state is the center of the corresponding cell in the underlying (x,y,0,...) cell

each transition is feasible

St6 S,
S
(constructed beforehand) ﬁ% %
set of motion primitives

pre-computed for each robot orientation
(action template)

replicate it~ ©(S1,5¢) =9

@ online -

by translating it

% > S,
100

Maxim Likhachev Carnegie Mellon 16

3D (x,y,0) Planning for Navigation m&

* Environment:
- graph constructed using motion primitives [Pivtoraiko & Kelly, IROS‘05]
- takes set of motion primitives as input (.mprim files generated within
matlab/mprim directory using corresponding matlab scripts):

unicycle model or unicycle with sideways motions or ...

Maxim Likhachev Carnegie Mellon 17

3D (x,y,0) Planning for Navigation WJ

* Environment:
- graph constructed using motion primitives [Pivtoraiko & Kelly, ‘05]
- takes set of motion primitives as input (.mprim files generated within
matlab/mprim directory using corresponding matlab scripts)
- takes the footprint of the robot defined as a polygon as input

Maxim Likhachev Carnegie Mellon 18

3D (x,y,0) Planning for Navigation %

* @Graph search:
- typically ARA* (anytime version of A*) or Anytime D* (anytime
incremental version of A*)

Maxim Likhachev Carnegie Mellon 19

3D (x,y,0) Planning for Navigation WJ

* Planning with full-body collision checking (3d_navigation node
in ROS)

Hornung et al., ICRA 12

Maxim Likhachev Carnegie Mellon 20

Outline WJ

e QOverview

 Few SBPL-based planners in details

- 3D (x,y,0) lattice-based planning for navigation
(available as ROS node or standalone within SBPL)

- single and dual 7DOF arm motion planning using manipulation lattice
(available as ROS node)

e Pros/Cons

Maxim Likhachev Carnegie Mellon

21

Single- and Dual-arm Motion Planning %

e Environment:

- graph constructed using static & adaptive motion
primitives for the arm(s) [Cohen et al., ICRA11]

- heuristic for any state is 3D distance for end-effector
accounting for obstacles (computed as 3D BFS) [Cohen
et al., I[CRA11]

Maxim Likhachev Carnegie Mellon 22

Single- and Dual-arm Motion Planning %

* @Graph search:
- typically ARA* (anytime version of A* search)

Maxim Likhachev Carnegie Mellon 23

Single- and Dual-arm Motion Planning m&
* Planning for PR2 and KUKA arms

Carrying a tray with a wine

glass filled with Cheerios
through a tight space

[Cohen et al., ICRA’12] Rdvanced Robotic Laser Coating Removal System work led by
. Cohen & Cowley;

Ccrc ..
f joint work
i with CJ Taylor

T

NATIONAL ROBOTICS

NGINEERING CENTER

joint work Stentz, Herman, Galati, Kelly, Meyhofer, etc. at NREC/CMU
Maxim Likhachev Carnegie Mellon 24

Outline %

e QOverview

 Few SBPL-based planners in details

- 3D (x,y,0) lattice-based planning for navigation
(available as ROS node or standalone within SBPL)

- single and dual 7DOF arm motion planning using manipulation lattice
(available as ROS node)

e Pros/Cons

Maxim Likhachev Carnegie Mellon

25

Motion Planning with Heuristic Search Wd

* Pros
- typically good cost minimization
- consistent motions
- handle discrete transitions naturally

* Cons
- can be slow if heuristic function has deep local minima
- designing a “good” but fast-to-compute heuristic function is important
- designing and coding up a compact graph representation can be non-trivial

Maxim Likhachev Carnegie Mellon 26

sbpd

http://www.sbpl.net/software or http://www.ros.org/wiki/sbpl

Thanks to Willow Garage for their support of SBPL!

Collaborators on SBPL: S. Chitta, B. Cohen, M. Phillips

Maxim Likhachev Carnegie Mellon 27

http://www.sbpl.net/software
http://www.ros.org/wiki/sbpl

