
Search-based Planning Library

SBPL

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

Maxim Likhachev 2

• Overview

• Few SBPL-based planners in details

- 3D (x,y,θ) lattice-based planning for navigation

 (available as ROS node or standalone within SBPL)

- single and dual 7DOF arm motion planning using manipulation lattice

 (available as ROS node)

• Pros/Cons

Outline

Maxim Likhachev 3

• Overview

• Few SBPL-based planners in details

- 3D (x,y,θ) lattice-based planning for navigation

 (available as ROS node or standalone within SBPL)

- single and dual 7DOF arm motion planning using manipulation lattice

 (available as ROS node)

• Pros/Cons

Outline

Maxim Likhachev 4

• A library for planning with heuristic search (e.g., A* search and its

variants)

• Standalone library and integrated into ROS

• Compiles under linux and windows

• http://www.sbpl.net/software or http://www.ros.org/wiki/sbpl

Search-based Planning Library (SBPL)

http://www.sbpl.net/software
http://www.sbpl.net/software
http://www.sbpl.net/software
http://www.ros.org/wiki/sbpl
http://www.sbpl.net/software

Maxim Likhachev 5

• generate a systematic graph representation of the planning problem

• search the graph for a solution with a heuristic search

• typically the construction of the graph is interleaved with the

search (i.e., only create the states/edges that search explores)

Planning with Heuristic Search

motion primitives

construct

the graph:

search the graph

for solution:

lattice-based graph representation for 3D (x,y,θ) planning:

discretize:

construct

the graph:

search the graph

for solution:

2D grid-based graph representation for 2D (x,y) search-based planning:

Maxim Likhachev 6

• Typical components of a Search-based Planner

- Graph construction (given a state what are its successor states)

- Cost function (a cost associated with every transition in the graph)

- Heuristic function (estimates of cost-to-goal)

- Graph search algorithm (for example, A* search)

Planning with Heuristic Search

Maxim Likhachev 7

• Typical components of a Search-based Planner

- Graph construction (given a state what are its successor states)

- Cost function (a cost associated with every transition in the graph)

- Heuristic function (estimates of cost-to-goal)

- Graph search algorithm (for example, A* search)

Planning with Heuristic Search
d

o
m

a
in

 d
ep

en
d

en
t

domain independent

Maxim Likhachev 8

• Typical components of a Search-based Planner

- Graph construction (given a state what are its successor states)

- Cost function (a cost associated with every transition in the graph)

- Heuristic function (estimates of cost-to-goal)

- Graph search algorithm (for example, A* search)

Planning with Heuristic Search
d

o
m

a
in

 d
ep

en
d

en
t

domain independent

Domain-independent
graph search

Environment defining
the planning problem

as a graph

SBPL Library

Maxim Likhachev 9

• Typical components of a Search-based Planner

- Graph construction (given a state what are its successor states)

- Cost function (a cost associated with every transition in the graph)

- Heuristic function (estimates of cost-to-goal)

- Graph search algorithm (for example, A* search)

Planning with Heuristic Search
d

o
m

a
in

 d
ep

en
d

en
t

domain independent

Domain-independent
graph search

Environment defining
the planning problem

as a graph

SBPL Library

Implements:
Successors/Predecessors of a state;

Transition cost; State heuristic

Implements:
Graph search

(e.g, A*, D*, ARA*, etc.)

Maxim Likhachev 10

• Typical components of a Search-based Planner

- Graph construction (given a state what are its successor states)

- Cost function (a cost associated with every transition in the graph)

- Heuristic function (estimates of cost-to-goal)

- Graph search algorithm (for example, A* search)

Planning with Heuristic Search
d

o
m

a
in

 d
ep

en
d

en
t

domain independent

Domain-independent
graph search

Environment defining
the planning problem

as a graph

SBPL Library

Implements:
Successors/Predecessors of a state;

Transition cost; State heuristic

Implements:
Graph search

(e.g, A*, D*, ARA*, etc.)

All communications

happen via state IDs (no

domain information)

Memory allocated on-

the-fly only for states

visited by search

Maxim Likhachev 11

• Usage of SBPL:

- build a planner using existing components to run on a robot

- plugin and test your own graph search

- develop and plugin an environment for your specific planning

problem “representable” as a graph search problem

Search-based Planning Library (SBPL)

Domain-independent
graph search

Environment defining
the planning problem

as a graph

Planning module

 - receives map, pose and goal updates

 - updates environment with new map

 - calls graph search to re-plan

SBPL Library

Maxim Likhachev 12

• Currently implemented graph searches within SBPL:
- ARA* - anytime version of A*

- ANA* - anytime non-parametric version of A*

- Anytime D* - anytime incremental version of A*

- R* - a randomized version of A* (hybrid between deterministic searches and sampling-

based planning)

• Currently implemented environments (planning problems) within SBPL:
- 2D (x,y) grid-based planning problem

- 3D (x,y,θ) lattice-based planning problem

- 3D (x,y,θ) lattice-based planning problem with full-body collision checking

- N-DOF planar robot arm planning problem

• ROS packages that use SBPL:
- SBPL lattice planner for (x,y,θ) planning for navigation

- SBPL lattice planner for (x,y,θ) planning for navigation with full-body collision checking

- SBPL cart planner for PR2 navigating with a cart

- SBPL motion planner for PR2 single- and dual-arm motions

- default move_base invokes SBPL lattice planner as part of escape behavior

- SBPL door planning module for PR2 opening and moving through doors

- SBPL footstep planner for humanoids (by Armin Hornung at Univ. of Freiburg)

Search-based Planning Library (SBPL)

Maxim Likhachev 13

Search-based Planning Library (SBPL)
• Main.cpp shows simple examples for how to use SBPL:

 EnvironmentNAVXYTHETALAT environment_navxythetalat;

 if(!environment_navxythetalat.InitializeEnv(argv[1], perimeterptsV, NULL))

 {

 SBPL_ERROR("ERROR: InitializeEnv failed\n");

 throw new SBPL_Exception();

 }

 if(!environment_navxythetalat.InitializeMDPCfg(&MDPCfg))

 {

 SBPL_ERROR("ERROR: InitializeMDPCfg failed\n");

 throw new SBPL_Exception();

 }

 //plan a path

 vector<int> solution_stateIDs_V;

 bool bforwardsearch = false;

 ADPlanner planner(&environment_navxythetalat, bforwardsearch);

if(planner.set_start(MDPCfg.startstateid) == 0)

{

 SBPL_ERROR("ERROR: failed to set start state\n");

 throw new SBPL_Exception();

 }

 if(planner.set_goal(MDPCfg.goalstateid) == 0)

 {

 SBPL_ERROR("ERROR: failed to set goal state\n");

 throw new SBPL_Exception();

 }

 planner.set_initialsolution_eps(3.0);

 bRet = planner.replan(allocated_time_secs, &solution_stateIDs_V);

 SBPL_PRINTF("size of solution=%d\n",(unsigned int)solution_stateIDs_V.size());

Maxim Likhachev 14

• Overview

• Few SBPL-based planners in details

- 3D (x,y,θ) lattice-based planning for navigation

 (available as ROS node or standalone within SBPL)

- single and dual 7DOF arm motion planning using manipulation lattice

 (available as ROS node)

• Pros/Cons

Outline

Maxim Likhachev 15

3D (x,y,θ) Planning for Navigation

Domain-independent
graph search

environment_navxythe
talat.cpp/.h

SBPL Library

sbpl_lattice_planner in ROS

Maxim Likhachev 16

• Environment:
- graph constructed using motion primitives [Pivtoraiko & Kelly, IROS„05]

3D (x,y,θ) Planning for Navigation

set of motion primitives

pre-computed for each robot orientation

(action template)

replicate it

online

by translating it

each transition is feasible

(constructed beforehand)

outcome state is the center of the corresponding cell in the underlying (x,y,θ,…) cell

Maxim Likhachev 17

• Environment:
- graph constructed using motion primitives [Pivtoraiko & Kelly, IROS„05]

- takes set of motion primitives as input (.mprim files generated within

matlab/mprim directory using corresponding matlab scripts):

3D (x,y,θ) Planning for Navigation

unicycle model or unicycle with sideways motions or …

Maxim Likhachev 18

• Environment:
- graph constructed using motion primitives [Pivtoraiko & Kelly, „05]

- takes set of motion primitives as input (.mprim files generated within

matlab/mprim directory using corresponding matlab scripts)

- takes the footprint of the robot defined as a polygon as input

3D (x,y,θ) Planning for Navigation

Maxim Likhachev 19

• Graph search:
- typically ARA* (anytime version of A*) or Anytime D* (anytime

incremental version of A*)

3D (x,y,θ) Planning for Navigation

Domain-independent
graph search

environment_navxythe
talat.cpp/.h

SBPL Library

sbpl_lattice_planner in ROS

Maxim Likhachev 20

• Planning with full-body collision checking (3d_navigation node

in ROS)

3D (x,y,θ) Planning for Navigation

Hornung et al., ICRA‘12

Maxim Likhachev 21

• Overview

• Few SBPL-based planners in details

- 3D (x,y,θ) lattice-based planning for navigation

 (available as ROS node or standalone within SBPL)

- single and dual 7DOF arm motion planning using manipulation lattice

 (available as ROS node)

• Pros/Cons

Outline

Maxim Likhachev

sbpl_arm_planner in ROS

22

Single- and Dual-arm Motion Planning

Domain-independent
graph search

environment_robarm3d.
cpp

SBPL Library

• Environment:
- graph constructed using static & adaptive motion

primitives for the arm(s) [Cohen et al., ICRA„11]

- heuristic for any state is 3D distance for end-effector

accounting for obstacles (computed as 3D BFS) [Cohen

et al., ICRA„11]

Maxim Likhachev

sbpl_arm_planner in ROS

23

Single- and Dual-arm Motion Planning

Domain-independent
graph search

environment_robarm3d.
cpp

SBPL Library

• Graph search:
- typically ARA* (anytime version of A* search)

Maxim Likhachev 24

Single- and Dual-arm Motion Planning

• Planning for PR2 and KUKA arms

[Cohen et al., ICRA’12] work led by

Cohen & Cowley;

joint work

with CJ Taylor

joint work Stentz, Herman, Galati, Kelly, Meyhofer, etc. at NREC/CMU

Maxim Likhachev 25

• Overview

• Few SBPL-based planners in details

- 3D (x,y,θ) lattice-based planning for navigation

 (available as ROS node or standalone within SBPL)

- single and dual 7DOF arm motion planning using manipulation lattice

 (available as ROS node)

• Pros/Cons

Outline

Maxim Likhachev 26

Motion Planning with Heuristic Search

• Pros
- typically good cost minimization

- consistent motions

- handle discrete transitions naturally

• Cons
- can be slow if heuristic function has deep local minima

- designing a “good” but fast-to-compute heuristic function is important

- designing and coding up a compact graph representation can be non-trivial

Maxim Likhachev 27

Thanks to Willow Garage for their support of SBPL!

Collaborators on SBPL: S. Chitta, B. Cohen, M. Phillips

http://www.sbpl.net/software or http://www.ros.org/wiki/sbpl

http://www.sbpl.net/software
http://www.ros.org/wiki/sbpl

